

Single Source Machine Control ……………………………………………..…...………………. Power // Flexibility // Ease of Use

21314 Lassen St. Chatsworth, CA 91311 // Tel. (818) 998-2095 Fax. (818) 998-7807 // www.deltatau.com

^1 USER MANUAL

^2 Accessory 84E

DELTA TAU
Data Systems, Inc.

NEW IDEAS IN MOTION …

DELTA TAU

^3 Universal Serial Encoder Interface

^4 3Ax-603927-xUxx

^5 October 17, 2018

http://www.deltatau.com/

ACC-84E User Manual

Copyright Information
© 2018 Delta Tau Data Systems, Inc. All rights reserved.

This document is furnished for the customers of Delta Tau Data Systems, Inc. Other uses are unauthorized

without written permission of Delta Tau Data Systems, Inc. Information contained in this manual may be

updated from time-to-time due to product improvements, etc., and may not conform in every respect to

former issues.

To report errors or inconsistencies, call or email:

Delta Tau Data Systems, Inc. Technical Support

Phone: (818) 717-5656

Fax: (818) 998-7807

Email: support@deltatau.com

Website: http://www.deltatau.com

Operating Conditions
All Delta Tau Data Systems, Inc. motion controller products, accessories, and amplifiers contain static

sensitive components that can be damaged by incorrect handling. When installing or handling Delta Tau

Data Systems, Inc. products, avoid contact with highly insulated materials. Only qualified personnel should

be allowed to handle this equipment.

In the case of industrial applications, we expect our products to be protected from hazardous or conductive

materials and/or environments that could cause harm to the controller by damaging components or causing

electrical shorts. When our products are used in an industrial environment, install them into an industrial

electrical cabinet or industrial PC to protect them from excessive or corrosive moisture, abnormal ambient

temperatures, and conductive materials. If Delta Tau Data Systems, Inc. products are directly exposed to

hazardous or conductive materials and/or environments, we cannot guarantee their operation.

mailto:support@deltatau.com
http://www.deltatau.com/

ACC-84E User Manual

Safety Instructions

Qualified personnel must transport, assemble, install, and maintain this equipment. Properly qualified

personnel are persons who are familiar with the transport, assembly, installation, and operation of

equipment. The qualified personnel must know and observe the following standards and regulations:

IEC364resp.CENELEC HD 384 or DIN VDE 0100

IEC report 664 or DIN VDE 0110

National regulations for safety and accident prevention or VBG 4

Incorrect handling of products can result in injury and damage to persons and machinery. Strictly adhere

to the installation instructions. Electrical safety is provided through a low-resistance earth connection. It

is vital to ensure that all system components are connected to earth ground.

This product contains components that are sensitive to static electricity and can be damaged by incorrect

handling. Avoid contact with high insulating materials (artificial fabrics, plastic film, etc.). Place the

product on a conductive surface. Discharge any possible static electricity build-up by touching an

unpainted, metal, grounded surface before touching the equipment.

Keep all covers and cabinet doors shut during operation. Be aware that during operation, the product has

electrically charged components and hot surfaces. Control and power cables can carry a high voltage,

even when the motor is not rotating. Never disconnect or connect the product while the power source is

energized to avoid electric arcing.

A Warning identifies hazards that could result in personal injury or

death. It precedes the discussion of interest.

Warning

Caution

A Caution identifies hazards that could result in equipment damage. It

precedes the discussion of interest.

Note

A Note identifies information critical to the understanding or use of

the equipment. It follows the discussion of interest.

ACC-84E User Manual

MANUAL REVISION HISTORY

REV DESCRIPTION DATE CHANGE APPROVED

1 Manual Creation. 04/27/10 CP SS

2 Fixed addresses in EnDat section. 12/01/10 RN RN

3

Added detailed information about EnDat, Yaskawa,

Tamagawa, Panasonic, Mitutoyo, BiSS B/C, Matsushita

A/D and Mitsubishi protocols.

07/17/14 SS SS

4 Added example for incremental EnDat2.2 10/23/14 SS SS

5 Added XY2-100 Protocol Appendix 05/08/15 SS SS

6 Added XY2-100 PWM output pulse counter 12/22/15 SS SS

7 Added XY2-100 PWM On-Delay feature 1/6/2016 SS SS

8 Added Enhanced PWM Delay Features for XY2-100 8/24/16 AA SS

9 Added KC Conformity 10/17/18 SM RN

ACC-84E User Manual

Table of Contents vi

Table of Contents

INTRODUCTION..8

Overview ... 8

Compatibility .. 9

SPECIFICATIONS..10

Environmental Specifications .. 10

Physical Specifications .. 10

Electrical Specifications ... 10

Configuration ... 10

Agency Approval and Safety ... 12

HARDWARE SETUP ...13

Addressing the ACC-84E .. 13

Signal Format .. 13

Connections .. 13

Encoder Specific Connection Information ... 15

SOFTWARE SETUP ...17

Hardware-Control Parameter Setup .. 17

Multi-Channel Setup Element .. 19

Single-Channel Setup Element ... 31

Hardware-Status Data Structure ... 47

Single-Channel Status Elements .. 47

USING THE RESULTING POSITION INFORMATION..68

Using the ACC-84E with Power PMAC ... 68

Ongoing Commutation Phase Position .. 68

Power-On Commutation Phase Position ... 69

Ongoing Servo Position ... 69

Power-On Servo Position ... 70

Using the ACC-84E with Turbo PMAC .. 71

Setup Summary ... 72

Technique 1 Example ... 74

Technique 2 Example ... 78

Technique 3 Example ... 83

Using the ACC-84E with MACRO ... 95

Addressing and Register Addresses ... 95

Setting up the Global and Channel Registers on Power Up .. 96

Encoder Conversion Table Setup ... 96

Absolute Power-On Phasing and Servo Power on Position .. 97

APPENDIX A: SETUP EXAMPLES ..99

ACC-84E User Manual

Table of Contents vii

SSI Feedback Setup Example .. 100

Multi-Channel Setup Element .. 100

Single-Channel Setup Element ... 100

Brushless Motor with SSI Feedback - Setup Notes .. 100

EnDat 2.2 Feedback Setup Example: ... 103

Absolute phase and power-up/reset position ... 104

EnDat 2.2 with Incremental Encoders: .. 104

EnDat 2.2 Reference Mark Setup Example: .. 106

Yaskawa Sigma II/III/V Feedback Setup Example .. 109

Channel Control Register Setup for Position Read ... 109

Encoder Specific Settings ... 110

BiSS-C Feedback Setup Example: ... 124

Commutation with High Resolution Encoders (more than 23 bits per revolution) 125

Absolute Power-On Servo Position .. 126

Absolute Power-On/Reset Phase Position ... 127

APPENDIX B: SERIAL LINK (XY2-100) PROTOCOL SUPPORT130

Signal Description ... 130

Clock .. 130

Sync .. 131

X, Y & Z Data ... 131

Status .. 131

Connections .. 132

DE-9 Connector Pin Out .. 132

DA-15 Connector Pin Out .. 133

Signal Termination ... 134

Setup Elements ... 135

Multi-Channel Setup Element .. 135

Channel Specific Command Register ... 137

Status Data Structures .. 142

Single-Channel Status Elements .. 142

ACC-84E Setup Element Example ... 148

Encoder Conversion Table Example .. 148

Power PMAC Motor Setup Example.. 149

Motor Speed/Acceleration Limitations .. 150

Initializing Motor Position ... 151

Non-linearity of Scanheads .. 152

Corrections for Scanner/Optics Non-linearity ... 154

ACC-84E User Manual

Introduction 8

INTRODUCTION

Overview

The ACC-84E Universal Serial Encoder Interface Board provides up to four channels of serial encoders

to be read by the UMAC and Ultralite/MACRO Station controllers. The ACC-84E is part of the UMAC

or MACRO Pack family of expansion cards and these accessory cards are designed to plug into an

industrial 3U rack system. The information from these accessories is passed directly to either the UMAC

or MACRO Station CPU via the high speed JEXP expansion bus. ACC-84E supports different serial

encoder protocols depending on the option ordered. These protocols are programmed into an on-board

FPGA upon manufacturing. Multiple common protocols are supported at the moment and future

developments of additional protocols are feasible. Currently, ACC-84E supports the following protocols:

 SSI Synchronous Serial Interface

 EnDat 2.2 EnDat 2.2 interface from HEIDENHAIN

 Yaskawa Yaskawa Sigma II/III/V feedback support

 Tamagawa Tamagawa OAS and SA Absolute Encoders

 Panasonic A4 and A5 Encoder Series

 Mitutoyo Mitutoyo ENSIS® high-speed serial protocol (AT503/AT503A/ST70X)

 BiSS B/C BiSS B/C Unidirectional

 Matsushita

 Mitsubishi Mitsubishi Serial Encoder Protocol for HG-X Servo Motors

Each ACC-84E can only support one of the protocols mentioned above for all four channels. If the

customer has two different serial protocols in the system, two separate ACC-84E cards should be used.

Since ACC-84E is strictly a feedback input card, if the feedback is intended to be used as the feedback for

closed loop servo control, the servo command should be sent out to the amplifier using a UMAC axis

interface card depending on the signal and control type required by amplifier. Here is a list of possible

axis interface cards available for UMAC systems:

 ACC-24E2 Digital amplifier breakout w/ TTL encoder inputs or MLDT

 ACC-24E2A Analog amplifier breakout w/ TTL encoder inputs or MLDT

 ACC-24E2S Stepper amplifier breakout w/ TTL encoder inputs or MLDT

 ACC-24E3 Analog/Digital Output (Power PMAC Compatible Only)

Up to 12 ACC-84E boards can be connected to one UMAC providing up to 48 channels of serial encoder

feedback. Because each MACRO Station CPU can service only eight channels of servo data, only two

fully populated ACC-84E boards can be connected to the MACRO-Station.

The ACC-84E board will take the data from the serial encoder and process it as up to four 24-bit binary

parallel words depending on protocol specifications. This data can then processed in the UMAC or

MACRO Station encoder conversion table for position and velocity feedback. With proper setup, the

information can also be used to commutate brushless and AC induction motors.

ACC-84E User Manual

Introduction 9

Compatibility

The ACC-84E can be used with any type of CPU available for UMAC systems. These CPUs include:

 Power PMAC UMAC CPU

 Turbo PMAC UMAC CPU

 MACRO16 UMAC CPU

ACC-84E User Manual

Specifications 10

SPECIFICATIONS

Environmental Specifications

Description Specification Notes

Operating Temperature 0°C to 45°C,

Storage Temperature -25°C to 70°C

Humidity 10% to 95 % non-condensing

Physical Specifications

Description Specification Notes

Dimensions

Length: 16.256 cm (6.4 in.)

Height: 10 cm (3.94 in.)

Width: 2.03 cm (0.8 in.)

Weight

DB Connectors DB9 Female UL-94V0

The width is the width of the front plate. The length and height are the dimensions of the PCB.

Electrical Specifications

Description Specification Notes

ACC-84E Power

Requirements

5V @ 360mA (10%)

+15V @ 0 A

-15V @ 0 A

5V current requirement mentioned is the consumption

of the ACC-84E without any encoders connected.

Configuration

The ACC-84E can support different serial encoder protocols depending on the selected option. The

following figure shows its part number scheme:

3 - 3 9 2 7 A - 0 0 - 0 0 - 2

UMAC ACC-84E

* If Any Additional Option is required, contact factory for digits K and L (Factory Assigned digits).

K L

H

00 - No Additional* Options

xx - Factory assigned digits

 for Additional* Options

K L

Factory Assigned Options

I

B – BLACK Front, top and

 bottom plates (Standard)

F - BLACK Front plate only

 Order as Spare Only

R – SILVER Front, top and

 bottom plates

A - SILVER Front plate only

 Order as Spare Only

Plate Options

I

02 – SSI Protocol

03 – EnDat 2.2 Protocol

06 – Yaskawa Sigma II & III & V

07 – Tamagawa Protocol

08 – Panasonic Protocol

09 – Mitutoyo Protocol

0B – BISS-B & C Protocol

0C – Matsushita Protocol

0D – Mitsubishi Protocol

Serial Protocol Options

G

G H

H

ACC-84E User Manual

Specifications 11

ACC-84E User Manual

Specifications 12

Agency Approval and Safety

Item Description

CE Mark EN61326-1

EMC EN55011 Class A Group 1

EN61000-4-2

EN61000-4-3

EN61000-4-4

EN61000-4-5

EN61000-4-6

Flammability Class UL 94V-0

KC EMI: KN 11

EMS: KN 61000-6-2

사 용 자 안 내 문

이 기기는 업무용 환경에서 사용할 목적으로 적합성평가를 받은 기기로서 가정

용 환경에서 사용하는 경우 전파간섭의 우려가 있습니다.

한국 EMC적용제품 준수사항

본 제품은 전파법(KC 규정)을 준수합니다. 제품을 사용하려면 다음 사항에 유

의하십시오. 이 기기는 업무용 환경에서 사용할 목적으로 적합성평가를 받은

기기로서 가정용 환경에서 사용하는 경우 전파간섭의 우려가 있습니다. 입

력에 EMC 필터, 서지 보호기, 페라이트 코어 또는 1차측의 케이블에 노이즈

필터를 입력으로 사용하십시오.

ACC-84E User Manual

Hardware Setup 13

HARDWARE SETUP
The ACC-84E uses expansion port memory locations defined by the type of PMAC (Power, Turbo, or

MACRO) to which it is directly communicating.

Addressing the ACC-84E

The Switch 1 (SW1) settings will allow you to select the starting address location for data from the first

encoder. Data from encoders 2 through 4 will be placed at +4 memory locations from the base address

and so on and so forth.

Chip

Select

Base Address SW1 Positions

TURBO MACRO POWER 6 5 4 3 2 1

CS10

Y:$78C00 Y:$8800 ACC84E[0] ON ON ON ON ON ON

Y:$79C00 Y:$9800 ACC84E[4] ON ON ON OFF ON ON

Y:$7AC00 Y:$A800 ACC84E[8] ON ON OFF ON ON ON

Y:$7BC00 Y:$B800 ACC84E[12] ON ON OFF OFF ON ON

CS12

Y:$78D00 Y:$8840 ACC84E[1] ON ON ON ON ON OFF

Y:$79D00 Y:$9840 ACC84E[5] ON ON ON OFF ON OFF

Y:$7AD00 Y:$A840 ACC84E[9] ON ON OFF ON ON OFF

Y:$7BD00 Y:$B840 ACC84E[13] ON ON OFF OFF ON OFF

CS14

Y:$78E00 Y:$8880 ACC84E[2] ON ON ON ON OFF ON

Y:$79E00 Y:$9880 ACC84E[6] ON ON ON OFF OFF ON

Y:$7AE00 Y:$A880 ACC84E[10] ON ON OFF ON OFF ON

Y:$7BE00 Y:$B880 ACC84E[14] ON ON OFF OFF OFF ON

Note

ON designates Closed. OFF designates Open. Factory default is all

ON.

Signal Format

The signal format for the encoder is dependent on the particular protocol, but in all protocols, there is a

“strobe” and/or “clock” output from the controller, and a data channel into the processor from the

encoder. The encoder is queried synchronously with the Power/Turbo PMAC’s phase or servo clock, and

the incoming serial data is latched into a memory-mapped register for the processor to read.

Connections

Encoders are connected to the ACC-84E through four 9-pin D-sub connectors. Two connectors on the top

side of the rack for encoders 1 and 2, and two connectors in the bottom side for encoders 3 and 4.

ACC-84E User Manual

Hardware Setup 14

D-Sub DE9 Female

Mating: D-Sub DE9 Male

Pin # / Function
SSI /

EnDat
Yaskawa Tamagawa Panasonic

Mitutoyo/

Mitsubishi

BiSS

B/C
Matsushita

1 CLOCK– OUT CLK- – MA- –

2 DATA– IN/OUT DAT-
SDI

BLU/BLK
SD̅̅ ̅̅ PS̅̅̅̅

MRR

(*RQ/*DT)
SLO- /Rx

3 ENA– OUT – SENA̅̅ ̅̅ ̅̅ ̅̅ –

4 GND COM GND
GND

BLK
GND

5 GND COM GND
GND

BLK
GND

6 CLOCK+ OUT CLK+ – MA+ –

7 DATA+ IN/OUT DAT+
SDO

BLU
SD PS

MR

(RQ/DT)
SLO+ Rx

8 ENA+ OUT – SENA –

9 + 5V OUT + 5V

12345

6789

ACC-84E User Manual

Hardware Setup 15

Encoder Specific Connection Information

Yaskawa Sigma II/III/V Encoders
Yaskawa Sigma II/III/V absolute encoders require a 3.6V battery to maintain the multi-turn data while the

controller is powered down. This battery should be placed outside of ACC-84E and the Yaskawa Sigma

II/III/V encoder, possibly on the cable. The battery should be installed between orange (+3.6V) and

orange/black wires (GND). Use of ready-made cables by Yaskawa is recommended. (Yaskawa part

number: UWR00650)

1 3 5

2 4 6

+5VDC (Red)

BAT+ (Orange)

SDO (Blue)

GND (Black)

BAT-

(Orange/Black)

SDI (Blue/Black)

1
2

3
4

5

6
7

8
9

The previous diagram shows the pin assignment from mating IEEE 1394 Yaskawa Sigma II connector to

ACC-84E encoder input. The Molex connector required for IEEE 1394 can be acquired as receptacle kit

from Molex, 2.00mm (.079") Pitch Serial I/O Connector, Receptacle Kit, Wire-to-Wire, Molex Part

Number: 0542800609.

Note

Yaskawa Encoder expects a supply voltage of 5V with less than 5%

tolerance. Make sure voltage drop is not caused by excessive wire

length.

Note

Encoder wire shield must be connected to chassis ground on both

encoder and connector ends.

Note

Yaskawa Sigma II/III/V require a 120Ω termination resistor between

SDI and SDO twisted pair lines on ACC-84E side.

ACC-84E User Manual

Hardware Setup 16

Mitsubishi HG- Servo Motor Encoders
Mitsubishi HG- servo motor absolute encoders require a 3.6V battery to maintain the multi-turn data

while the controller is powered down. This battery should be placed outside of ACC-84E and the

Mitsubishi HG- servo motor’s encoder, possibly on the cable. The battery should be installed between

pin 9 of the motor encoder connector (+6V) and pin 2(GND). Use of ready-made cables by Mitsubishi is

recommended. (Mitsubishi part number: UWR00650)

19 3

24

+5VDC

BAT+ MR

GND
BAT-

MRR

12345

6789

The diagram above shows the pin assignment from mating 3M SCR Receptacle (36110) to ACC-84E

encoder input.

ACC-84E User Manual

Software Setup 17

SOFTWARE SETUP
ACC-84E supports multiple protocols and for this reason the setup for each of them will be different. For

each protocol, depending on the CPU type, the setup steps differs slightly, but the general idea regardless

of the protocol is the same.

Position encoders that provide numerical position information in a serial data stream, usually representing

absolute position information, are becoming increasingly popular. ACC-84E is an FPGA-based interface

which is programmed to support different serial protocols. Multiple serial encoder protocols are supported

by ACC-84E.

Hardware-Control Parameter Setup

This section describes the Power/Turbo PMAC serial encoder hardware interface in general terms. All of

the supported serial encoder interfaces use differential signal pairs at 5V RS-422 levels. All have clock

and/or “strobing” outputs, and all have a data signal input. In some protocols, the data line is bi-

directional, supporting data output commands to the encoder.

The configuration of the hardware control registers differs slightly between serial protocols in the ACC-

84E, however, the principles of setup are the same.

Because of the serial data protocol, the transfer of data from the encoder to the Power/Turbo PMAC

interface circuitry takes a significant amount of time. The data must be ready for the processor

immediately after the falling edge of the phase and/or servo clock signals, which are the interrupts to the

processor telling it to start those respective tasks.

The process of querying the encoder for data must start well before these signal edges, and this timing

must be carefully considered. If it starts too late, the data will not be ready in time. If it starts too early,

unnecessary delay is introduced into the feedback loop, possibly compromising its performance. In both

styles of interface, the multi-channel saved setup element permits the user to optimize the timing by

selecting the edge (rising or falling) of the clock signal (phase or servo) that starts the triggering process,

and the time delay from this edge until the actual triggering occurs. The following diagram shows the

time lines for the possible configurations:

ACC-84E User Manual

Software Setup 18

TD1 TD2

TD1

Xmit1 Used1 Used2Xmit2

Xmit1

Used1

 TD2 Xmit2 Used2

Phase

Clock

Servo

Clock

t = 0

t = 1

t = 2

t = 3 TD1 Xmit1 Used1

Used1TD1 Xmit1

t: Trigger select code – clock and edge

TDn: Trigger delay from edge for cycle n

Xmitn: Data transmission for cycle n

Usedn: Data used by software for cycle n

Serial Encoder Interface Timing

The “SEIGATE” FPGA on the ACC-84E UMAC board has a multi-channel setup element that affects all

channels on the IC, and a single-channel setup element for each channel.

This section describes the setup elements for the serial encoder interface in general terms. Detailed

information for each serial encoder protocol can be found in the following reference chapters of the

manual.

Note

This section describes the setup of the FPGA-based elements using

the Acc84E[i] data structure. If you are using the FPGA-base serial

encoder interface in the Power Brick, substitute “Acc84B[i]” for

“Acc84E[i]”.

ACC-84E User Manual

Software Setup 19

Multi-Channel Setup Element

The multi-channel setup element Acc84E[i].SerialEncCtrl (saved element in Power PMAC only and

non-saved in Turbo PMAC, must be setup in power/initialization PLC) specifies several aspects of the

serial encoder configuration for all four channels of the IC: the protocol, the trigger, and the clock

frequency. All three of these aspects must be common to all four channels of the IC, so it is not possible,

for instance, to interface to encoders with different protocols from the same IC.

The different components of this 24-bit full-word element cannot be accessed as independent elements, so

it is necessary to assemble the full-word value from the values of the individual components. It is easiest

to treat the value as a hexadecimal value, so the individual components can be seen independently.

Power PMAC

Global Control Register

Turbo PMAC

Global Control

Register

Switch Position (SW1)

1 2 3 4

ACC84E[0].SerialEncCtrl X:$78C0F Close Close Close Close

ACC84E[4].SerialEncCtrl X:$79C0F Close Close Open Close

ACC84E[8].SerialEncCtrl X:$7AC0F Close Close Close Open

ACC84E[12].SerialEncCtrl X:$7BC0F Close Close Open Open

ACC84E[1].SerialEncCtrl X:$78D0F Open Close Close Close

ACC84E[5].SerialEncCtrl X:$79D0F Open Close Open Close

ACC84E[9].SerialEncCtrl X:$7AD0F Open Close Close Open

ACC84E[13].SerialEncCtrl X:$7BD0F Open Close Open Open

ACC84E[2].SerialEncCtrl X:$78E0F Close Open Close Close

ACC84E[6].SerialEncCtrl X:$79E0F Close Open Open Close

ACC84E[10].SerialEncCtrl X:$7AE0F Close Open Close Open

ACC84E[14].SerialEncCtrl X:$7BE0F Close Open Open Open

Acc84E[i].SerialEncCtrl is the full-word element that comprises the multi-channel setup for serial

encoder interfaces for the ACC-84E. It is comprised of the following components (which cannot be

accessed as independent elements):

Component

Turbo PMAC/

Power PMAC

Script Bits

Hex

Digit #

C

Bits
Functionality

SerialClockMDiv 23 – 16 1 – 2 31 – 24 Serial clock linear division factor

SerialClockNDiv 15 – 12 3 23 – 20 Serial clock exponent division factor

(Reserved) 11 – 10 4 19 – 18 (Reserved for future use)

SerialTrigClockSel 09 4 17 Serial trigger source select

SerialTrigEdgeSel 08 4 16 Serial trigger source edge select

SerialTrigDelay 07 – 04 5 15 – 12 Serial trigger delay from source edge

SerialProtocol 03 – 00 6 11 – 08 Serial encoder protocol select (read-only)

ACC-84E User Manual

Software Setup 20

The component SerialClockMDiv controls how an intermediate clock frequency is generated from the

IC’s fixed 100 MHz clock frequency. The resulting serial-encoder clock frequency is then generated from

this intermediate clock frequency by the component SerialClockNDiv, described below.

The equation for this intermediate clock frequency fint is:

1

100
int

M
MHzf

where M is short for SerialClockMDiv. This 8-bit component can take a value from 0 to 255, so the

resulting intermediate clock frequencies can range from 100 MHz down to 392 kHz.

The component SerialClockNDiv controls how the final serial-encoder clock frequency is generated from

the intermediate clock frequency set by SerialClockMDiv. The equation for this final frequency fser is:

 NNser
M

MHzf
MHzf

2*1

100

2

int

where N is short for SerialClockNDiv. This 4-bit component can take a value from 0 to 15, so the

resulting 2N divisor can take a value from 1 to 32,768.

For serial-encoder protocols with an explicit clock signal, the resulting frequency is the frequency of the

clock signal that is output from the ACC-84E’s IC to the encoder. For “self-clocking” protocols without

an explicit clock signal, this frequency is the input sampling frequency, and will be 20 to 25 times higher

than the input bit rate fbit. Refer to the instructions for the particular protocol for details.

The component SerialTrigClockSel controls which Power PMAC clock signal causes the encoder to be

triggered. This single-bit component is set to 0, the encoder will be triggered on the phase clock; if it is set

to 1, the encoder will be triggered on the servo clock. If the encoder feedback is required for commutation

rotor angle feedback, it should be triggered on the phase clock; otherwise it can be triggered on the servo

clock.

The component SerialTrigEdgeSel controls which edge of the clock signal (phase or servo) selected by

SerialTrigClockSel initiates the triggering process. If this single-bit component is set to 0, the triggering

process starts on the rising edge; if it is set to 1, the triggering process starts on the falling edge.

Power PMAC software expects to have the resulting encoder data available to it immediately after the

falling edge of the relevant phase or servo clock signal, which interrupts the processor to initiate the

activity that reads this data. Since minimum delay from trigger to use is desirable, it is better to start the

triggering on rising clock edge if the data can be fully transferred before the falling edge. If this is not

possible, the falling edge should be used to start the triggering process.

It is best to choose the edge that minimizes the delay between the triggering of the encoder and its use by

the Power/Turbo PMAC software. The software will use the received encoder value immediately after the

falling edge of the phase clock for commutation feedback, and immediately after the falling edge of the

servo clock for servo feedback.

If you are using the serial encoder data for commutation feedback, you must trigger using the phase clock

in order to get new data every phase cycle. If there is sufficient time to receive the data in one half of a

phase clock cycle, you should use the rising edge of the phase clock to trigger. For example, at the default

phase clock frequency of 9 kHz, a clock cycle is 110 µsec. If the serial encoder data can be received

within 55 µsec, the rising edge should be used. If not, the falling edge must be used.

If you are only using the serial encoder data for servo, and not commutation, feedback, the servo clock

can be used for the trigger. However, it is still advisable to use the phase clock if possible to minimize the

delay. When using the servo clock, as with the phase clock, use the rising edge if possible for the trigger,

and the falling edge only if required.

Remember that the servo clock signal is low only for one half phase clock cycle. For example, with the

default 9 kHz phase clock and 2.25 kHz servo clock, the servo clock is low for only a half of 110 µsec

phase clock cycle, and the delay from the rising edge to the next falling edge is 385 µsec.

The component SerialTrigDelay specifies the delay from the specified clock edge to the actual start of the

output signal that will trigger the encoder response, in units of the serial encoder clock. A non-zero value

ACC-84E User Manual

Software Setup 21

can be used to minimize the delay between triggering the encoder and its resulting use by the Power

PMAC.

The triggering does not need to start exactly on the specified clock edge. The trigger delay component

SerialTrigDelay specifies the number of 20-microsecond intervals after the specified clock edge before

the triggering of the encoder actually begins. It can take a value of $0 to $F (0 to 15, or 0 to 300

microseconds). Non-zero values can be used to minimize the delay between triggering of the encoder and

the use of its data in the next software cycle.

The component SerialProtocol controls which serial-encoder protocol is selected for all channels of the

IC. This 4-bit component can take a value from 0 to 15. This component is read-only, as it reflects the

protocol interface that was installed in the board at the factory.

Note

The FPGA used here comes with the interface for only a single

serial protocol, which was pre-installed at the factory as specified in

the order. This component of the element is read-only, simply

notifying the user which protocol has been installed.

The following table shows the protocol selected for each value of this component (more protocols may be

added):

Value Protocol Value Protocol Value Protocol Value Protocol

0 (Reserved) 4 (Reserved) 8 Panasonic 12 Matsushita

1 (Reserved) 5 (Reserved) 9 Mitutoyo 13 Mitsubishi

2 SSI 6 Sigma II/III 10 (Reserved) 14 (Reserved)

3 EnDat 7 Tamagawa 11 BiSS-B/C 15 (Reserved)

When used in the Script environment (Both Turbo and Power PMAC), Acc84E[i].SerialEncCtrl is a 24-

bit element. When used in the C environment (Power PMAC Only), it is a 32-bit element, with real data

in the high 24 bits, so its value in the C environment is 256 times greater than its value in the Script

environment.

ACC-84E User Manual

Software Setup 22

SSI Protocol
The following list shows typical settings of Acc84E[i].SerialEncCtrl for an SSI encoder.
SerialClockMDiv: = (100 / fbit) - 1 // Serial clock frequency = bit transmission frequency

SerialClockNDiv: = 0 // No further division unless f < 400 kHz

SerialTrigClockSel: = 0 // Use phase clock if possible

SerialTrigEdgeSel: = 0 // Use rising clock edge if possible

SerialTrigDelay: = 0 // Can increase from 0 if possible to reduce latency

SerialProtocol: = $02 // Shows SSI protocol is programmed into IC

For example, for a 2.5 MHz bit transmission rate, SerialClockMDiv = (100 / 2.5) - 1 = 39 ($23) and

Acc84E[i].SerialEncCtrl is set to $230002 for triggering on the rising edge of phase clock without delay.
Hex Digit ($) 2 3 0 0 0 2 - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value 0 0 1 0 0 0 1 1 0 0 0 0 - - 0 0 0 0 0 0 0 0 1 0 - -

Component: SerialClockMDiv SerialClockNDiv -- -- TC TE SerialTrigDelay SerialProtocol

The following table lists a few common Serial clock frequency settings used with SSI protocol:

SerialClockMDiv SerialClockNDiv Serial Clock Frequency

49 ($31) 0 ($0) 2.0 MHz

99 ($63) 0 ($0) 1.0 MHz

99 ($63) 1 ($1) 500.0 kHz

99 ($63) 2 ($2) 250.0 kHz

ACC-84E User Manual

Software Setup 23

EnDat 2.1/2.2 Protocol
The following list shows typical settings of Acc84E[i].SerialEncCtrl for an EnDat encoder. The serial

clock frequency is set 25 times higher than the external clock frequency, which is the bit transmission

frequency fbit (MHz), to permit oversampling of the input signal.
SerialClockMDiv: = (4 / fbit) - 1 // Serial clock freq. = 25x bit transmission freq.

SerialClockNDiv: = 0 // No further division

SerialTrigClockSel: = 0 // Use phase clock if possible

SerialTrigEdgeSel: = 0 // Use rising clock edge if possible

SerialTrigDelay: = 0 // Can increase from 0 if possible to reduce latency

SerialProtocol: = $03 // Shows EnDat protocol is programmed into IC

For example, for a 2.0 MHz bit transmission rate, SerialClockMDiv = (4 / 2) - 1 = 1 ($01) and

Acc84E[i].SerialEncCtrl is set to $010003 for triggering on the rising edge of phase clock without delay.
Hex Digit ($) 0 1 0 0 0 3 - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value 0 0 0 0 0 0 0 1 0 0 0 0 - - 0 0 0 0 0 0 0 0 1 1 - -

Component: SerialClockMDiv SerialClockNDiv -- -- TC TE SerialTrigDelay SerialProtocol

The following table lists a few common Serial clock frequency settings used with EnDat2.1/2.2 protocol:

SerialClockMDiv SerialClockNDiv Serial Clock Freq. Bit Transmission Freq.

0 ($00) 2 ($2) 25.0 MHz 1.0 MHz

0 ($00) 3 ($3) 12.5 MHz 500 kHz

0 ($00) 4 ($4) 6.25 MHz 250 kHz

In newer version of the EnDat 2.1/2.2 firmware for ACC-84E (Released Feb. 4, 2014) bit 11 is used as backward

compatible switch, which if set allows higher bit transmission frequencies.

Note

Higher serial clock/but transmission frequency is only supported for

short encoder cables, since in FPGA implementation of EnDat

2.1/2.2 in ACC-84E does not have the delay compensation feature.

The following list shows typical settings of Acc84E[i].SerialEncCtrl based upon the additional clock

switch for an EnDat encoder. The the bit transmission frequency fbit (MHz) is fixed at 1/4 of the external

clock frequency.
SerialClockMDiv: = (25 / fbit) - 1 // Serial clock freq. = 4x bit transmission freq.

SerialClockNDiv: = 0 // No further division

SerialDivSelect: = 0 // Selects higher clock frequency selection

SerialTrigClockSel: = 0 // Use phase clock if possible

SerialTrigEdgeSel: = 0 // Use rising clock edge if possible

SerialTrigDelay: = 0 // Can increase from 0 if possible to reduce latency

SerialProtocol: = $03 // Shows EnDat protocol is programmed into IC

For example, for a 5.0 MHz bit transmission rate, SerialClockMDiv = (25 / 5) - 1 = 4 ($04) and

Acc84E[i].SerialEncCtrl is set to $040803 for triggering on the rising edge of phase clock without delay.
Hex Digit ($) 0 4 0 8 0 3 - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value 0 0 0 0 0 0 0 1 0 0 0 0 1 - 0 0 0 0 0 0 0 0 1 1 - -
Component: SerialClockMDiv SerialClockNDiv DS -- TC TE SerialTrigDelay SerialProtocol

ACC-84E User Manual

Software Setup 24

The following table lists a few common Serial clock frequency settings used with EnDat2.1/2.2 protocol:

SerialClockMDiv SerialClockNDiv Serial Clock Freq. Bit Transmission Freq.

1 ($01) 0 ($0) 50.0 MHz 12.5 MHz

2 ($02) 0 ($0) 33.33 MHz 8.33 MHz

3 ($03) 0 ($0) 25.0 MHz 6.25 MHz

4 ($04) 0 ($0) 20.0 MHz 5.0 MHz

5 ($05) 0 ($0) 16.66 MHz 4.16 MHz

Yaskawa Sigma II/III/V Protocol
The following list shows typical settings of Acc84E[i].SerialEncCtrl for a Yaskawa II/III/V encoder.
SerialClockMDiv: = 0 // 100 MHz serial clock freq. = 25x bit transmission freq.

SerialClockNDiv: = 0 // No further division

SerialTrigClockSel: = 0 // Use phase clock if possible

SerialTrigEdgeSel: = 0 // Use rising clock edge if possible

SerialTrigDelay: = 0 // Can increase from 0 if possible to reduce latency

SerialProtocol: = $06 // Shows Yaskawa II/III/V protocol is programmed

For example, for the standard 4.0 MHz bit transmission rate, a 100 MHz serial clock frequency is used,

and Acc84E[i].SerialEncCtrl is set to $000006 for triggering on the rising edge of phase clock without

delay.
Hex Digit ($) 0 0 0 0 0 6 - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value 0 0 0 0 0 0 0 0 0 0 0 0 - - 0 0 0 0 0 0 0 1 1 0 - -

Component: SerialClockMDiv SerialClockNDiv -- -- TC TE SerialTrigDelay SerialProtocol

The following table lists the only Serial clock frequency setting used with Yaskawa Sigma II/III/V

protocol:

SerialClockMDiv SerialClockNDiv Serial Clock Frequency

0 ($00) 0 ($0) 100.0 MHz

Note

Yaskawa Sigma II/III/V transmission of position data requires a

minimum transfer time of 62.5 μsec. It is important to choose trigger

clock and trigger edge to ensure complete transmission of data each

cycle before its use by the controller.

ACC-84E User Manual

Software Setup 25

Tamagawa Protocol
The following list shows typical settings of Acc84E[i].SerialEncCtrl for a Tamagawa FA-Coder serial

encoder. The serial clock frequency is set 20 times higher than the external clock frequency, which is the

bit transmission frequency fbit, to permit oversampling of the input signal.
SerialClockMDiv: = (5 / fbit) - 1 // Serial clock freq. = 20x bit transmission freq.

SerialClockNDiv: = 0 // No further division

SerialTrigClockSel: = 0 // Use phase clock if possible

SerialTrigEdgeSel: = 0 // Use rising clock edge if possible

SerialTrigDelay: = 0 // Can increase from 0 if possible to reduce latency

SerialProtocol: = $07 // Shows Tamagawa protocol is programmed into IC

For example, for a 2.5 MHz bit transmission rate, SerialClockMDiv = (5 / 2.5) - 1 = 1 ($01) and

Acc84E[i].SerialEncCtrl is set to $010007 for triggering on the rising edge of phase clock without delay.
Hex Digit ($) 0 1 0 0 0 7 - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value 0 0 0 0 0 0 0 1 0 0 0 0 - - 0 0 0 0 0 0 0 1 1 1 - -

Component: SerialClockMDiv SerialClockNDiv -- -- TC TE SerialTrigDelay SerialProtocol

The following table lists the only Serial clock frequency setting used with Tamagawa protocol:

SerialClockMDiv SerialClockNDiv Serial Clock Frequency

1 ($01) 0 ($0) 50.0 MHz

ACC-84E User Manual

Software Setup 26

Panasonic Protocol
The following list shows typical settings of Acc84E[i].SerialEncCtrl for a Panasonic encoder. The serial

clock frequency is set 20 times higher than the external clock frequency, which is the bit transmission

frequency fbit, to permit oversampling of the input signal.
SerialClockMDiv: = (5 / fbit) - 1 // Serial clock freq. = 20x bit transmission freq.

SerialClockNDiv: = 0 // No further division

SerialTrigClockSel: = 0 // Use phase clock if possible

SerialTrigEdgeSel: = 0 // Use rising clock edge if possible

SerialTrigDelay: = 0 // Can increase from 0 if possible to reduce latency

SerialProtocol: = $09 // Shows Panasonic protocol is programmed into IC

For example, for a 2.5 MHz bit transmission rate, SerialClockMDiv = (5 / 2.5) - 1 = 1 ($01) and

Acc84E[i].SerialEncCtrl is set to $010008 for triggering on the rising edge of phase clock without delay.
Hex Digit ($) 0 1 0 0 0 8 - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value 0 0 0 0 0 0 0 1 0 0 0 0 - - 0 0 0 0 0 0 1 0 0 0 - -

Component: SerialClockMDiv SerialClockNDiv -- -- TC TE SerialTrigDelay SerialProtocol

The following table lists the only Serial clock frequency setting used with Panasonic protocol:

SerialClockMDiv SerialClockNDiv Serial Clock Frequency

1 ($01) 0 ($0) 50.0 MHz

ACC-84E User Manual

Software Setup 27

Mitutoyo Protocol
The following list shows typical settings of Acc84E[i].SerialEncCtrl for a Mitutoyo serial encoder. The

serial clock frequency is set 20 times higher than the external clock frequency, which is the bit

transmission frequency fbit, to permit oversampling of the input signal.
SerialClockMDiv: = (5 / fbit) - 1 // Serial clock freq. = 20x bit transmission freq.

SerialClockNDiv: = 0 // No further division

SerialTrigClockSel: = 0 // Use phase clock if possible

SerialTrigEdgeSel: = 0 // Use rising clock edge if possible

SerialTrigDelay: = 0 // Can increase from 0 if possible to reduce latency

SerialProtocol: = $09 // Shows Mitutoyo protocol is programmed into IC

For example, for a 2.5 MHz bit transmission rate, SerialClockMDiv = (5 / 2.5) - 1 = 1 ($01) and

Acc84E[i].SerialEncCtrl is set to $010009 for triggering on the rising edge of phase clock without delay.
Hex Digit ($) 0 1 0 0 0 9 - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value 0 0 0 0 0 0 0 1 0 0 0 0 - - 0 0 0 0 0 0 1 0 0 1 - -

Component: SerialClockMDiv SerialClockNDiv -- -- TC TE SerialTrigDelay SerialProtocol

The following table lists the only Serial clock frequency setting used with Mitutoyo protocol:

SerialClockMDiv SerialClockNDiv Serial Clock Frequency

1 ($01) 0 ($0) 50.0 MHz

ACC-84E User Manual

Software Setup 28

BiSS B/C (Unidirectional) Protocol
The following list shows typical settings of Acc84E[i].SerialEncCtrl for a BiSS B or BiSS C

(unidirectional) encoder.
SerialClockMDiv: = (100 / fbit) - 1 // Serial clock frequency = bit transmission frequency

SerialClockNDiv: = 0 // No further division unless f < 400 kHz

SerialTrigClockSel: = 0 // Use phase clock if possible

SerialTrigEdgeSel: = 0 // Use rising clock edge if possible

SerialTrigDelay: = 0 // Can increase from 0 if possible to reduce latency

SerialProtocol: = $0B // Shows BiSS protocol is programmed into IC

For example, for a 1.0 MHz bit transmission rate, SerialClockMDiv = (100 / 1.0) - 1 = 99 ($63) and

Acc84E[i].SerialEncCtrl is set to $63000B for triggering on the rising edge of phase clock without

delay.
Hex Digit ($) 6 3 0 0 0 B - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value 0 1 1 0 0 0 1 1 0 0 0 0 - - 0 0 0 0 0 0 1 0 1 1 - -

Component: SerialClockMDiv SerialClockNDiv -- -- TC TE SerialTrigDelay SerialProtocol

The following table lists a few common Serial clock frequency settings used with BiSS B/C protocol:

SerialClockMDiv SerialClockNDiv Serial Clock Frequency

24 ($18) 0 ($0) 4.0 MHz

99 ($63) 0 ($0) 1.0 MHz

99 ($63) 1 ($1) 500.0 kHz

99 ($63) 2 ($2) 250.0 kHz

ACC-84E User Manual

Software Setup 29

Matsushita Protocol
The following list shows typical settings of Acc84E[i].SerialEncCtrl for a Matsushita serial encoder.

The serial clock frequency is set 20 times higher than the external clock frequency, which is the bit

transmission frequency fbit, to permit oversampling of the input signal.
SerialClockMDiv: = (5 / fbit) - 1 // Serial clock freq. = 20x bit transmission freq.

SerialClockNDiv: = 0 // No further division

SerialTrigClockSel: = 0 // Use phase clock if possible

SerialTrigEdgeSel: = 0 // Use rising clock edge if possible

SerialTrigDelay: = 0 // Can increase from 0 if possible to reduce latency

SerialProtocol: = $0C // Shows Matsushita protocol is programmed into IC

For example, for a 2.5 MHz bit transmission rate, SerialClockMDiv = (5 / 2.5) - 1 = 1 ($01) and

Acc84E[i].SerialEncCtrl is set to $01000C for triggering on the rising edge of phase clock without

delay.
Hex Digit ($) 0 1 0 0 0 C - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value 0 0 0 0 0 0 0 1 0 0 0 0 - - 0 0 0 0 0 0 1 1 0 0 - -
Component: SerialClockMDiv SerialClockNDiv -- -- TC TE SerialTrigDelay SerialProtocol

The following table lists the only Serial clock frequency setting used with Matsushita protocol:

SerialClockMDiv SerialClockNDiv Serial Clock Frequency

1 ($01) 0 ($0) 50.0 MHz

ACC-84E User Manual

Software Setup 30

Mitsubishi Protocol
The following list shows typical settings of Acc84E[i].SerialEncCtrl for a Mitsubishi serial encoder. The

serial clock frequency is set 20 times higher than the external clock frequency, which is the bit

transmission frequency fbit, to permit oversampling of the input signal.
SerialClockMDiv: = (5 / fbit) - 1 // Serial clock freq. = 20x bit transmission freq.

SerialClockNDiv: = 0 // No further division

SerialTrigClockSel: = 0 // Use phase clock if possible

SerialTrigEdgeSel: = 0 // Use rising clock edge if possible

SerialTrigDelay: = 0 // Can increase from 0 if possible to reduce latency

SerialProtocol: = $0D // Shows Mitsubishi protocol is programmed into IC

For example, for a 2.5 MHz bit transmission rate, SerialClockMDiv = (5 / 2.5) - 1 = 1 ($01) and

Acc84E[i].SerialEncCtrl is set to $01000D for triggering on the rising edge of phase clock without

delay.
Hex Digit ($) 0 1 0 0 0 D - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value 0 0 0 0 0 0 0 1 0 0 0 0 - - 0 0 0 0 0 0 1 1 0 1 - -
Component: SerialClockMDiv SerialClockNDiv -- -- TC TE SerialTrigDelay SerialProtocol

The following table lists the only Serial clock frequency setting used with Mitsubishi protocol:

SerialClockMDiv SerialClockNDiv Serial Clock Frequency

1 ($01) 0 ($0) 50.0 MHz

Note

Mitsubishi Serial Encoder on HG- type servo motors can only be

queried at 55.5μsec±1.0μsec (18 kHz), 111μsec±1.0μsec (9 kHz) and

222μsec±1.0μsec (4.5 kHz). If the request cycle is other than the

above cycles the data will not be latched properly.

ACC-84E User Manual

Software Setup 31

Single-Channel Setup Element

Each channel of the FPGA has a 24-bit saved setup element Acc84E[i].Chan[j].SerialEncCmd (saved

element in Power PMAC only and non-saved in Turbo PMAC) that specifies exactly how the channel’s

serial encoder interface will operate, given the protocol, trigger timing, and frequency specified by the

multi-channel element. It has multiple components that specify different aspects of this interface. Not all

components are used in every protocol.

Power PMAC

Channel Control Register

Turbo

PAMC Base

Address

Channel

1 (j=0) 2 (j=1) 3 (j=2) 4 (j=3)

ACC84E[0].Chan[j].SerialEncCmd $78C00 Y:$78C00 Y:$78C04 Y:$78C08 Y:$78C0C

ACC84E[4].Chan[j].SerialEncCmd $79C00 Y:$79C00 Y:$79C04 Y:$79C08 Y:$79C0C

ACC84E[8].Chan[j].SerialEncCmd $7AC00 Y:$7AC00 Y:$7AC04 Y:$7AC08 Y:$7AC0C

ACC84E[12].Chan[j].SerialEncCmd $7BC00 Y:$7BC00 Y:$7BC04 Y:$7BC08 Y:$7BC0C

ACC84E[1].Chan[j].SerialEncCmd $78D00 Y:$78D00 Y:$78D04 Y:$78D08 Y:$78D0C

ACC84E[5].Chan[j].SerialEncCmd $79D00 Y:$79D00 Y:$79D04 Y:$79D08 Y:$79D0C

ACC84E[9].Chan[j].SerialEncCmd $7AD00 Y:$7AD00 Y:$7AD04 Y:$7AD08 Y:$7AD0C

ACC84E[13].Chan[j].SerialEncCmd $7BD00 Y:$7BD00 Y:$7BD04 Y:$7BD08 Y:$7BD0C

ACC84E[2].Chan[j].SerialEncCmd $78E00 Y:$78E00 Y:$78E04 Y:$78E08 Y:$78E0C

ACC84E[6].Chan[j].SerialEncCmd $79E00 Y:$79E00 Y:$79E04 Y:$79E08 Y:$79E0C

ACC84E[10].Chan[j].SerialEncCmd $7AE00 Y:$7AE00 Y:$7AE04 Y:$7AE08 Y:$7AE0C

ACC84E[14].Chan[j].SerialEncCmd $7BE00 Y:$7BE00 Y:$7BE04 Y:$7BE08 Y:$7BE0C

Acc84E[i].Chan[j].SerialEncCmd is comprised of the following components. These components cannot

be accessed as independent data structure elements, so the value of the element must be “built up” from

the value of the individual components.

Component
Script

Bits

Hex

Digit #

C

Bits
Functionality

SerialEncCmdWord 23 – 16 1 – 2 31 – 24 Serial encoder output command

SerialEncParity 15 – 14 3 23 – 22 Serial encoder parity type

SerialEncTrigMode 13 3 21 Serial trigger mode: continuous or one-shot

SerialEncTrigEna 12 3 20 Serial trigger enable

SerialEncGtoB 11 4 19 Serial SSI data Gray-to-binary convert control

SerialEncEna/

SerialEncDataReady

10 4 18 Serial encoder circuitry enable (write)

Serial encoder received data ready (read)

SerialEncStatusBits 09 – 06 4 – 5 17 – 14 Serial encoder SPI number of status bits

SerialEncNumBits 05 – 00 5 – 6 13 – 08 Serial encoder bit length control

ACC-84E User Manual

Software Setup 32

The full element can be viewed in the following format. In the Script environment (Both in Turbo and

Power PMAC), it is accessed as a 24-bit element. In the C environment (Only in Power PMAC), it is

accessed as a 32-bit element with the real data in the high 24 bits.

Hex Digit ($) - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value - - -
Component: SerialEncCmdWord Parity TM TE GB Ena Status NumBits

Note

This section provides information about

Acc84E[i].Chan[j].SerialEncCmd that is common to all protocols.

. For more detailed and protocol-specific information, refer to the

corresponding section of the manual.

The 8-bit component SerialEncCmdWord is used to define a command value sent to the serial encoder in

a protocol-specific manner. This value can be changed during an application for different functionality,

such as resetting an encoder. Not all protocols require a command value.

The 2-bit component SerialEncParity defines the parity type to be expected for the received data packet

(for those protocols that support parity checking). A value of 0 specifies no parity; a value of 1 specifies

odd parity; a value of 2 specifies even parity. (A value of 3 is reserved for future use.)

The 1-bit component SerialEncTrigMode specifies whether the encoder is to be repeatedly sampled or

just one time. A value of 0 specifies continuous sampling (every phase or servo cycle as set by the multi-

channel element Acc84E[i].SerialEncCtrl); a value of 1 specifies one-shot sampling.

The 1-bit component SerialEncTrigEna specifies whether the encoder is to be sampled or not. A value of

0 specifies no sampling; a value of 1 enables sampling of the encoder. If sampling is enabled with

SerialEncTrigMode at 0, the encoder will be repeatedly sampled (every phase or servo cycle as set by the

multi-channel element Acc84E[i].SerialEncCtrl) as long as SerialEncTrigEna is left at a value of 1.

However, if sampling is enabled with SerialEncTrigMode at 1, the encoder will be sampled just once, and

the ACC-84E’s IC will automatically set SerialEncTrigEna back to 0 after the sampling.

The 1-bit component SerialEncGtoB specifies whether the data returned in SSI protocol undergoes a

conversion from Gray format to numerical-binary format or not. A value of 0 specifies that no conversion

is done; a value of 1 specifies that the incoming data undergoes a Gray-to-binary conversion.

The 1-bit component SerialEncEna / SerialEncDataReady has separate functions for writing to and

reading from the register. When writing to the register, this bit represents SerialEncEna, which enables

the driver circuitry for the serial encoder. This bit must be set to 1 to use any protocol of serial encoder on

the channel. If there is an alternate use for the same signal pins, this bit must be set to 0 so the encoder

drivers do not conflict with the alternate use. Note that you cannot read back the value you have written

to this bit!
When reading from the register, you get the SerialEncDataReady status bit indicating the state of the

serial data reception. It reports 0 during the data transmission indicating that valid new data is not yet

ready. It reports 1 when all of the data has been received and processed. This is particularly important for

slower interfaces that may take multiple servo cycles to complete a read; in these cases, the bit should be

polled to determine when data is ready.

ACC-84E User Manual

Software Setup 33

The 4-bit component SerialEncStatusBits specifies the number of status bits the interface will expect from

the encoder in the SPI protocol. The valid range of settings is 0 to 12.

The 6-bit component SerialEncNumBits specifies the number of data bits the interface will expect from

the encoder in the SSI, EnDat, or BiSS protocol. The valid range of settings for these protocols is 12 – 63.

In other protocols, the number of bits is not specified this way, and this value does not matter, so this

component is usually left at 0.

When used in the Script environment, Acc84E[i].Chan[j].SerialEncCmd is a 24-bit element. When used

in the C environment, it is a 32-bit element, with real data in the high 24 bits, so its value in the C

environment is 256 times greater than its value in the Script environment.

ACC-84E User Manual

Software Setup 34

SSI Protocol
The following list shows typical settings of Acc84E[i].Chan[j].SerialEncCmd for an SSI encoder.
SerialEncCmdWord: = 0 // No command word supported for SSI protocol

SerialEncParity: = ?? // Encoder-specific parity check

SerialEncTrigMode: = 0 // Continuous triggering

SerialEncTrigEna: = 1 // Enable triggering

SerialEncGtoB: = ?? // Encoder-specific data format

SerialEncEna: = 1 // Enable driver circuitry

SerialEncStatusBits: = 0 // No status bits supported for SSI protocol

SerialEncNumBits: = ?? // Encoder-specific number of position bits returned

For example, for an SSI encoder with 25 position bits in Gray-code format with odd parity,

Acc84E[i].Chan[j].SerialEncCmd would be set to $005C19. (It may report back as $005819 if the data-

ready status bit is not set.)
Hex Digit ($) 0 0 5 C 1 9 - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value - - - - - - - - 0 1 0 1 1 1 - - - - 0 1 1 0 0 1 - -
Component: SerialEncCmdWord Parity TM TE GB Ena Status NumBits

ACC-84E User Manual

Software Setup 35

EnDat2.1/2.2 Protocol
The EnDat interface in the ACC-84E supports four 6-bit command codes that are sent directly to the

encoder:

 000111 ($07) for reporting position (EnDat2.1)

 101010 ($2A) for resetting the encoder (EnDat2.1)

 111000 ($38) for reporting position with possible additional information (EnDat2.2)

 101101 ($2D) for resetting the encoder (EnDat2.2)

These 6 bits fit at the low end of the 8-bit SerialEncCmdWord command field of

Acc84E[i].Chan[j].SerialEncCmd.

Note

By the EnDat standard, EnDat2.2 encoders should be able to accept

and process EnDat2.1 command codes as well. However, not all

encoders sold as meeting the EnDat2.2 standard can do this.

For EnDat2.2 encoders, the ACC-84E (starting 1st quarter 2014) also supports controller requests for

additional information from the encoder through the use of Memory Range Select (MRS) codes. To

implement these, the SerialEncCmdWord command field contains the MRS code. (In this mode, the

ACC-84E sends the 111000 command code – report position with additional information – to the

encoder.)

The following MRS codes are supported in the EnDat2.2 standard:

 $40 – Send additional info 1 w/o data content (NOP)

 $41 – Send diagnostic values

 $42 – Send position value 2 word 1 LSB

 $43 – Send position value 2 word 2

 $44 – Send position value 2 word 3 MSB

 $45 – Acknowledge memory content LSB

 $46 – Acknowledge memory content MSB

 $47 – Acknowledge MRS code

 $48 – Acknowledge test command

 $49 – Send test value word 1 LSB

 $4A – Send test value word 2

 $4B – Send test value word 3 MSB

 $4C – Send temperature 1

 $4D – Send temperature 2

 $4F – Stop sending additional information 1

 $50 – Send additional info 2 w/o data contents (NOP)

 $51 – Send commutation

 $52 – Send acceleration

 $53 – Send commutation & acceleration

 $54 – Send limit position signals

 $55 – Send limit position signals & acceleration

 $56 – Currently not assigned

 $5F – Stop sending additional information 2

The response from the encoder to specific MRS code data requests from the encoder depends on the

availability of that data in the encoder. The additional information provided from supported MRS codes

will be found in status elements Acc84E[i].Chan[j].SerialEncDataC and SerialEncDataD.

ACC-84E User Manual

Software Setup 36

The following list shows typical settings of Acc84E[i].Chan[j].SerialEncCmd for position reporting

from an EnDat encoder.
SerialEncCmdWord: = {cmd/MRS code} // Command code

SerialEncParity: = 0 // No parity check supported for EnDat protocol

SerialEncTrigMode: = 0 // Continuous triggering (EnDat2.2)

SerialEncTrigEna: = 1 // Enable triggering

SerialEncGtoB: = 0 // No Gray code supported for EnDat protocol

SerialEncEna: = 1 // Enable driver circuitry

SerialEncStatusBits: = 0 // No status bits supported for EnDat protocol

SerialEncNumBits: = {enc spec} // Encoder-specific number of position bits returned

For example, for an EnDat2.2 encoder with 37 position bits, Acc84E[i].Chan[j].SerialEncCmd would be

set to $381425 for continuous position reporting. (It may report back as $381025 if the data-ready status

bit is not set.)
pg 3 8 1 4 2 5 - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value - 0 1 1 1 0 0 0 - - 0 1 - 1 - - - - 1 0 0 1 0 1 - -
Component: SerialEncCmdWord Parity TM TE GB Ena Status NumBits

This same encoder can be reset with a command word value of 45 ($2D) sent in one-shot mode with

Acc84E[i].Chan[j].SerialEncCmd set to $2D3425.
Hex Digit ($) 2 D 3 4 2 5 - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value - 0 1 0 1 1 0 1 - - 1 1 - 1 - - - - 1 0 0 1 0 1 - -

Component: SerialEncCmdWord Parity TM TE GB Ena Status NumBits

For an EnDat2.1 encoder with 24 position bits, Acc84E[i].Chan[j].SerialEncCmd would be set to

$073418 for one-shot position reporting (at power-up). It will report back as $073018 until the data is

received.
Hex Digit ($) 0 7 3 4 1 8 - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value - - 0 0 0 1 1 1 - - 1 1 - 1 - - - - 0 1 1 0 0 0 - -

Component: SerialEncCmdWord Parity TM TE GB Ena Status NumBits

For an EnDat2.2 incremental encoder with 24 position bits, Acc84E[i].Chan[j].SerialEncCmd would be

set to $421418 for continuous position reporting with additional information of position 2 word 1. (It may

report back as $421018 if the data-ready status bit is not set.)
Hex Digit ($) 4 2 1 4 1 8 - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value - 1 0 0 0 0 1 0 - - 0 1 - 1 - - - - 0 1 1 0 0 0 - -

Component: SerialEncCmdWord Parity TM TE GB Ena Status NumBits

ACC-84E User Manual

Software Setup 37

Reading Additional Information from EnDat2.2

The following sequence of settings needs to be followed in order for user to read additional information

from an EnDat2.2 compatible encoder:

 Change CommandCode in SerialEncoderCommand register to desired MRS code.

 Once bit 22 of the SerialEncoderCommand is set to 1 (all MRS codes share this property), then

the command code changes to 001001 for next cycle of communication.

 Encoder transmits the position data and SEIGATE3 receives it and stores it in SerialEncDataA

and SerialEncDataB.

 MRS code will be transmitted after reception of the position data (available in bits 16 to 22 of

serial encoder data)

 Depending on the first content bit (the bit after Busy bit in addition package), the package is

copied into either SerialEncoderDataC or SerialEncoderDataD register

Yaskawa Sigma II/III/V Protocol
The Yaskawa Sigma II/III/V interface supports position reporting and fault-reset modes. The command

code for position reporting is $00; the command code for fault reset is $04.

The following list shows typical settings of Acc84E[i].Chan[j].SerialEncCmd for position reporting

from a Yaskawa Sigma II/III/V encoder.
SerialEncCmdWord: = 0 // No command word for position reporting in Yaskawa

SerialEncParity: = 0 // No parity check supported for Yaskawa protocol

SerialEncTrigMode: = 0 // Continuous triggering

SerialEncTrigEna: = 1 // Enable triggering

SerialEncGtoB: = 0 // No Gray code supported for Yaskawa protocol

SerialEncEna: = 1 // Enable driver circuitry

SerialEncStatusBits: = 0 // No status bits supported for Yaskawa protocol

SerialEncNumBits: = 0 // Fixed number of position bits returned

Acc84E[i].Chan[j].SerialEncCmd would be set to $001400 for continuous position reporting. (It may

report back as $001000 if the ready status bit is not set.)
Hex Digit ($) 0 0 1 4 0 0 - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value - - 0 0 0 0 0 0 - - 0 1 - 1 0 0 0 0 0 0 0 0 0 0 - -

Component: SerialEncCmdWord Parity TM TE GB Ena Status NumBits

It is important for user to implement a background process, such as a PLC to check for TimeoutError,

CRC_Error and CodingError bits available in Acc84E[i].Chan[j].SerialEncDataB register to ensure

validity of connection and position data.

Most alarm conditions in Yaskawa Sigma II/III/V encoder are either level fault (non-latching) or are

cleared at cycle power, but absolute encoders have two latching errors (Backup Alarm which is usually

caused by loss/drainage of battery or Encoder Error Alarm which is caused by internal circuit bearkdown in the

encoder) which are not cleared on cycle power and require special instructions transmitted from controller for

clearing them.

ACC-84E User Manual

Software Setup 38

To reset the encoder, the components must be set up as follows:
SerialEncCmdWord: = $04 // $04 : Fault-reset command code

 // $00 : No-operation command code

SerialEncParity: = 0 // No parity check supported for Yaskawa protocol

SerialEncTrigMode: = 1 // Single-shot triggering

SerialEncTrigEna: = 1 // Enable triggering

SerialEncGtoB: = 0 // No Gray code supported for Yaskawa protocol

SerialEncEna: = 1 // Enable driver circuitry

SerialEncStatusBits: = 4 // Special reset command for Yaskawa protocol

SerialEncNumBits: = $01 // “Encoder address” for reset

This means that Acc84E[i].Chan[j].SerialEncCmd would be set to $043501 to start a fault reset. (It may

report back as $043101 if the ready status bit is not set.)
Hex Digit ($) 0 4 3 5 0 1 - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value - - 0 0 0 1 0 0 - - 1 1 - 1 0 1 0 0 0 0 0 0 0 1 - -
Component: SerialEncCmdWord Parity TM TE GB Ena Status NumBits

The following steps show the procedure for clearing the latched alarms on absolute encoders which the

user/plc should perform in certain order:

1. Write the value $043501 to Acc84E[i].Chan[j].SerialEncCmd.

2. Wait 10 milliseconds.

3. Wait for the trigger-enable component (Script bit 12) of this element to clear.

4. Wait for the busy signal (Script bit 8) of Acc84E[i].Chan[j].SerialEncDataB to clear. If cleared

go to step 7.

5. Clear the command code of this element to $00 by writing $003501 to the element.

6. Repeat steps 2 to 4.

7. Resume continuous position requests by writing $001400 to the element.

ACC-84E User Manual

Software Setup 39

Tamagawa FA-Coder Protocol
The following list shows typical settings of Acc84E[i].Chan[j].SerialEncCmd for a Tamagawa FA-

Coder serial encoder.
SerialEncCmdWord: = $1A // Command word for position reporting in Tamagawa

SerialEncParity: = 0 // No parity check supported for Tamagawa protocol

SerialEncTrigMode: = 0 // Continuous triggering

SerialEncTrigEna: = 1 // Enable triggering

SerialEncGtoB: = 0 // No Gray code supported for Tamagawa protocol

SerialEncEna: = 1 // Enable driver circuitry

SerialEncStatusBits: = 0 // No status bits supported for Tamagawa protocol

SerialEncNumBits: = 0 // Fixed number of position bits returned

Acc84E[i].Chan[j].SerialEncCmd would be set to $1A1400 for continuous position reporting. (It may

report back as $1A1000 if the ready status bit is not set.)
Hex Digit ($) 1 A 1 4 0 0 - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value 0 0 0 1 1 0 1 0 0 0 0 1 - 1 - - - - 0 0 0 0 0 0 - -
Component: SerialEncCmdWord Parity TM TE GB Ena Status NumBits

If the SerialEncCmdWord component is set to $BA and triggered for 10 consecutive cycles with 40

microseconds interval or more, all latched errors (Overspeed, Counter Overflow, Muti-turn error,

Counting Error II and Battery Error). This should be done in “one-shot” mode, making the element equal

to $BA3400 and triggered for 10 consecutive cycles with 40 microseconds interval or more.

If the SerialEncCmdWord component is set to $C2 and triggered for 10 consecutive cycles with 40

microseconds interval or more, the multi-turn position value in the encoder is reset to 0 and also all

latched errors are cleared. This should be done in “one-shot” mode, making the element equal to $C23400

and triggered for 10 consecutive cycles with 40 microseconds interval or more.

When the reset operation is done, the component should report as $BA2000, $C22000 respectively.

ACC-84E User Manual

Software Setup 40

Panasonic Protocol
The following list shows typical settings of Acc84E[i].Chan[j].SerialEncCmd for a Panasonic serial

encoder.
SerialEncCmdWord: = $2A // Command word for multi-turn position in Panasonic

SerialEncParity: = 0 // No parity check supported for Panasonic protocol

SerialEncTrigMode: = 0 // Continuous triggering

SerialEncTrigEna: = 1 // Enable triggering

SerialEncGtoB: = 0 // No Gray code supported for Panasonic protocol

SerialEncEna: = 1 // Enable driver circuitry

SerialEncStatusBits: = 0 // No status bits supported for Panasonic protocol

SerialEncNumBits: = 0 // Fixed number of position bits returned

Acc84E[i].Chan[j].SerialEncCmd would be set to $2A1400 for continuous position reporting. (It may

report back as $2A1000 if the ready status bit is not set.)
Hex Digit ($) 2 A 1 4 0 0 - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value 0 0 1 0 1 0 1 0 0 0 0 1 - 1 - - - - 0 0 0 0 0 0 - -
Component: SerialEncCmdWord Parity TM TE GB Ena Status NumBits

If the SerialEncCmdWord component is set to $52 for single-turn position reporting with alarm code,

Acc84E[i].Chan[j].SerialEncCmd would be set to $521400. (It may report back as $521000 if the data-

ready status bit is not set.) If the SerialEncCmdWord component is set to $52, the encoder ID value is also

reported.

If the SerialEncCmdWord component is set to $4A and triggered for 10 consecutive cycles with 40

microseconds interval or more Counter Overflow and Battery Alarm flags are cleared. This should be

done in “one-shot” mode, making the element equal to $4A3400 and triggered for 10 consecutive cycles

with 40 microseconds interval or more. The register should report as $4A2000 after completion of a

single trigger.

If the SerialEncCmdWord component is set to $F2 and triggered for 10 consecutive cycles with 40

microseconds interval or more, all latched errors are cleared (Overspeed, Counter Overflow, Mutiple

Revolution Error, Count Error II, Battery Alarm and System Down). This should be done in “one-shot”

mode, making the element equal to $F23400 and triggered for 10 consecutive cycles with 40

microseconds interval or more. The register should report as $F22000 after completion of a single trigger.

If the SerialEncCmdWord component is set to $DA and triggered for 10 consecutive cycles with 40

microseconds interval or more, the multi-turn position value in the encoder is reset to 0 (single revolution

data will not be reset) and also all latched errors are cleared (Overspeed, Counter Overflow, Mutiple

Revolution Error, Count Error II, Battery Alarm and System Down). This should be done in “one-shot”

mode, making the element equal to $DA3400 and triggered for 10 consecutive cycles with 40

microseconds interval or more. The register should report as $DA2000 after completion of a single

trigger.

If the SerialEncCmdWord component is set to $7A and triggered for 10 consecutive cycles with 40

microseconds interval or more single revolution data will be reset to 0°±0.35° (MAX). This should be

done in “one-shot” mode, making the element equal to $7A3400 and triggered for 10 consecutive cycles

with 40 microseconds interval or more. Notice that this reset command (all 10) should only be sent when

the encoder is at rest with no movement. Once reset, the single turn zero location is maintained regardless

of connection of external battery after main power source is turned off. The register should report as

$7A2000 after completion of a single trigger.

ACC-84E User Manual

Software Setup 41

Mitutoyo Protocol
The following list shows typical settings of Acc84E[i].Chan[j].SerialEncCmd for a Mitutoyo serial

encoder.
SerialEncCmdWord: = $01 // Command word for position reporting in Mitutoyo

SerialEncParity: = 0 // No parity check supported for Mitutoyo protocol

SerialEncTrigMode: = 0 // Continuous triggering

SerialEncTrigEna: = 1 // Enable triggering

SerialEncGtoB: = 0 // No Gray code supported for Mitutoyo protocol

SerialEncEna: = 1 // Enable driver circuitry

SerialEncStatusBits: = 0 // No status bits supported for Mitutoyo protocol

SerialEncNumBits: = 0 // Fixed number of position bits returned

Acc84E[i].Chan[j].SerialEncCmd would be set to $011400 for continuous position reporting. (It may

report back as $011000 if the ready status bit is not set.)

Hex Digit ($) 0 1 1 4 0 0 - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value 0 0 0 0 0 0 0 1 0 0 0 1 - 1 - - - - 0 0 0 0 0 0 - -

Component: SerialEncCmdWord Parity TM TE GB Ena Status NumBits

If the SerialEncCmdWord component is set to $89 and sent 8 times, the encoder is reset (equivalent to

power cycle on encoder). This should be done in “one-shot” mode repeated 8 times, making the element

equal to $893400. When the reset operation is done, the component should report as $892000.

If this component is set to $9D, the encoder will report its ID value. This should be done in “one-shot”

mode, and the IC will hold this value in status element Acc84E[i].Chan[j].SerialEncDataC.

ACC-84E User Manual

Software Setup 42

BiSS-B/C (Unidirectional) Protocol
For the BiSS-B and BiSS-C (unidirectional) protocols, the SerialEncCmdWord component of

Acc84E[i].Chan[j].SerialEncCmd specifies the CRC polynomial used for error detection when the

position and status data are reported. This is an 8-bit mask value “M” that can define any 4-bit to 8-bit

CRC polynomial. It must be set up to match the polynomial used for the particular BiSS encoder.

The mask bits M7 to M0 represent the coefficients for the terms x8 to x1, respectively, in the CRC

polynomial:

M7x8 + M6x7 + M5x6 + M4x5 + M3x4 + M2x3 + M1x2 + M0x1 + 1

The coefficient for x0 in a CRC polynomial is always 1, and so is not included in the mask. A mask with

all zeros is used to indicate that no CRC bits are included with the encoder data.

For example, if the encoder uses a CRC polynomial of x6 + x1 + 1 (as with the Renishaw ResoluteTM

encoders), the CRC mask value M should be set to 00100001 (bits M5 and M0 set to 1), or $21.

For the BiSS protocol, the SerialEncParity component of Acc84E[i].Chan[j].SerialEncCmd is used to

distinguish between the BiSS-B and BiSS-C protocol variants. Bit 1 of the component (bit 15 of the 24-

bit element) is set to 0 for BiSS-C, and to 1 for BiSS-B. (BiSS-C provides a zero bit between the start bit

and the position data; BiSS-B does not.) Hengstler Acuro®-Drive™ is an example of encoders supporting

BiSS-B (unidirectional) protocol.

Bit 0 of the component (bit 14 of the 24-bit element) is only used for BiSS-B. If it is set to 1, it permits

the acceptance of a “Multi-Cycle Data” (MCD) bit from the encoder by providing an extra clock cycle

output. The MCD bit is not captured or used.

The following list shows typical settings of Acc84E[i].Chan[j].SerialEncCmd for a BiSS C encoder.
SerialEncCmdWord: = $21 // CRC polynomial of x6 + x1 + 1

SerialEncParity: = 0 // BiSS-C protocol variant

SerialEncTrigMode: = 0 // Continuous triggering

SerialEncTrigEna: = 1 // Enable triggering

SerialEncGtoB: = 0 // No Gray code supported for EnDat protocol

SerialEncEna: = 1 // Enable driver circuitry

SerialEncStatusBits: = {enc spec} // Encoder-specific number of position bits returned

SerialEncNumBits: = {enc spec} // Encoder-specific number of status bits returned

For example, for a BiSS-C encoder with 36 position bits, 2 status bits, and a CRC polynomial of x6 + x1 +

1 (as with the Renishaw ResoluteTM encoders), Acc84E[i].Chan[j].SerialEncCmd would be set to

$2114A4 for continuous position reporting. (It may report back as $2110A4 if the data-ready status bit is

not set.)

Hex Digit ($) 2 1 1 4 A 4 - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value 0 0 1 0 0 0 0 1 0 0 0 1 - 1 - 0 1 0 1 0 0 1 0 0 - -

Component: SerialEncCmdWord Parity TM TE GB Ena Status NumBits

ACC-84E User Manual

Software Setup 43

For a BiSS-B encoder with 32 position bits, 4 status bits, an MCD bit, and a CRC polynomial of x4 + x1 +

1 , Acc84E[i].Chan[j].SerialEncCmd would be set to $09D520 for continuous position reporting. (It

may report back as $09D120 if the data-ready status bit is not set.)

Hex Digit ($) 0 9 D 5 2 0 - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value 0 0 0 0 1 0 0 1 1 1 0 1 - 1 - 1 0 0 1 0 0 0 0 0 - -

Component: SerialEncCmdWord Parity TM TE GB Ena Status NumBits

Matsushita Protocol
The following list shows typical settings of Acc84E[i].Chan[j].SerialEncCmd for a Matsushita serial

encoder.
SerialEncCmdWord: = $CA // Command word for multi-turn position in Matsushita

SerialEncParity: = 0 // No parity check supported for Matsushita protocol

SerialEncTrigMode: = 0 // Continuous triggering

SerialEncTrigEna: = 1 // Enable triggering

SerialEncGtoB: = 0 // No Gray code supported for Matsushita protocol

SerialEncEna: = 1 // Enable driver circuitry

SerialEncStatusBits: = 0 // No status bits supported for Matsushita protocol

SerialEncNumBits: = 0 // first 4 bits represent the Encoder ID

Acc84E[i].Chan[j].SerialEncCmd would be set to $CA1400 for continuous position reporting. (It may

report back as $CA1000 if the ready status bit is not set.)
Hex Digit ($) C A 1 4 0 0 - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value 1 1 0 0 1 0 1 0 0 0 0 1 - 1 - - - - - - 0 0 0 0 - -

Component: SerialEncCmdWord Parity TM TE GB Ena Reserved EncoderID

Matsushita protocol supports two modes of communication: independent and continuous. In Delta Tau’s

implementation of this protocol, only the independent communication is supported where the ID of the

request packet should match the ID of the encoder.

If the SerialEncCmdWord component is set to $9A for single-turn position reporting (first 16-bits of

single turn data), Acc84E[i].Chan[j].SerialEncCmd would be set to $9A1400. (It may report back as

$9A1000 if the data-ready status bit is not set.)

If the SerialEncCmdWord component is set to $A2 for multi-turn position plus MSB of single turn data

reporting (15 bits of multiple turn data + bit 17 of single turn data), Acc84E[i].Chan[j].SerialEncCmd

would be set to $A21400. (It may report back as $A21000 if the data-ready status bit is not set.)

If the SerialEncCmdWord component is set to $AA for Alarm code data reporting,

Acc84E[i].Chan[j].SerialEncCmd would be set to $AA1400. (It may report back as $AA1000 if the

data-ready status bit is not set.)

If the SerialEncCmdWord component is set to $CA for single-turn + multi-turn + alarm reporting (17-bits

of single turn data+15-bits of multi-turn data + 8bits of alarm data), Acc84E[i].Chan[j].SerialEncCmd

would be set to $CA1400. (It may report back as $CA1000 if the data-ready status bit is not set.)

ACC-84E User Manual

Software Setup 44

If the SerialEncCmdWord component is set to $E2 (Reset I) and triggered for 10 consecutive cycles with

7 microseconds interval or more battery alarm, system down and over speed flags are cleared. This should

be done in “one-shot” mode, making the element equal to $E23400 and triggered for 10 consecutive

cycles with 7 microseconds interval or more. The register should report as $E22000 after completion of a

single trigger.

If the SerialEncCmdWord component is set to $EA (Reset II) and triggered for 10 consecutive cycles with

7 microseconds interval or more, multi-turn data and counter overflow are reset. This reset mode should

only be called when the motor speed is less than 300 RPM. This should be done in “one-shot” mode,

making the element equal to $EA3400 and triggered for 10 consecutive cycles with 7 microseconds

interval or more. The register should report as $EA2000 after completion of a single trigger.

Note

For both $E2 and $EA reset modes:

 To check whether the reset is made correctly, Send a request

signal $CA to the encoder' and check the multi-turn data and

ALC on the output signal data field.

 Single-turn absolute data is prohibited from resetting.

If the SerialEncCmdWord component is set to $B2 and triggered for 10 consecutive cycles with 7

microseconds interval or more single revolution data will be reset to 0° and shaft position will be written

to EEPROM. This should be done in “one-shot” mode, making the element equal to $B23400 and

triggered for 10 consecutive cycles with 7 microseconds interval or more. Notice that this reset command

(all 10) should only be sent when the encoder is at rest with no movement. Once reset, the single turn zero

location is maintained regardless of connection of external battery after main power source is turned off.

The register should report as $B22000 after completion of a single trigger.

If the SerialEncCmdWord component is set to $BA and triggered for 10 consecutive cycles with 7

microseconds interval or more single revolution data will be reset to its initial data and EEPROM data

will be reset. This should be done in “one-shot” mode, making the element equal to $BA3400 and

triggered for 10 consecutive cycles with 7 microseconds interval or more. Notice that this reset command

(all 10) should only be sent when the encoder is at rest with no movement. Once reset, the single turn zero

location is maintained regardless of connection of external battery after main power source is turned off.

The register should report as $BA2000 after completion of a single trigger.

If the SerialEncCmdWord component is set to $F2/$FA and triggered for 10 consecutive cycles with 7

microseconds interval or more, The Encoder ID present in lower 4 bits of

Acc84E[i].Chan[j].SerialEncCmd is written to EEPROM on the encoder. This should be done in “one-

shot” mode, making the element equal to $F23400/$FA3400 and triggered for 10 consecutive cycles with

7 microseconds interval or more. The register should report as $F22000/$FA2000 after completion of a

single trigger.

If the SerialEncCmdWord component is set to $D2/$DA and triggered for 10 consecutive cycles with 7

microseconds interval or more, The Encoder ID stored in EEPROM of the encoder is fored into “S8-

shaft” (111). This should be done in “one-shot” mode, making the element equal to $D23400/$DA3400

and triggered for 10 consecutive cycles with 7 microseconds interval or more. The register should report

as $D22000/$DA2000 after completion of a single trigger.

ACC-84E User Manual

Software Setup 45

Note

Only the encoders that are written with an encoder ID “S8-shaft”

permit to change the setting of the encoder ID.

If an encoder has an ID, other than S8 (111), it is necessary to assign

it the ID S8 using $D2/DA mode before assigning it its final ID.

The difference between $F2 and $FA is similar to the difference between $D2 and $DA command modes.

The command modes $F2 and D2 despite different functionality, cause the overflow flag to be reflected

in the ea0 status bit. The command modes $FA and DA, prevent the reflection of overflow flag in the ea0

status bit.

ACC-84E User Manual

Software Setup 46

Mitsubishi Protocol
The Mitsubishi encoder has 8 request codes defined for the Request Field transmitted from the controller

to the encoder. To transmit a specific ID code to the encoder, program the SerialEncCmdWord register

with the appropriate Command Code listed below:

 $02 – for reporting single-turn data (single-turn data in lower 18 bits of 24-bit word. 18-bit

single-turn data in bits 0 to 17 and bits [18:23] report 0)

 $8A – for reporting multi-turn data

 $92 – for reporting Encoder-ID

 $A2 – for reporting single-turn and multi-turn data (single-turn data in lower 20 bits of 24-bit

word. 18-bit single-turn data in bits 2 to 19 and bits [0:1] and [18:23] report 0)

 $2A – for reporting single-turn and multi-turn data (single-turn data in lower 18 bits of 24-bit

word. 18-bit single-turn data in bits 0 to 17 and bits [18:23] report 0)

 $32 – for reporting single-turn and multi-turn data (single-turn data in upper 20 bits of 24-bit

word. 18-bit single-turn data in bits 6 to 23 and bits [0:5] report 0)

 $BA – for clearing alarms and reporting single-turn data(single-turn data in lower 18 bits of 24-

bit word. 18-bit single-turn data in bits 0 to 17 and bits [18:23] report 0)

 $7A – for reporting encoder/motor ID

The following list shows typical settings of Acc84E[i].Chan[j].SerialEncCmd for a Mitsubishi HG type

servo motor’s serial encoder.
SerialEncCmdWord: = $32 // Command word for position reporting in Mitsubishi

SerialEncParity: = 0 // No parity check supported for Mitsubishi protocol

SerialEncTrigMode: = 0 // Continuous triggering

SerialEncTrigEna: = 1 // Enable triggering

SerialEncGtoB: = 0 // No Gray code supported for Mitsubishi protocol

SerialEncEna: = 1 // Enable driver circuitry

SerialEncStatusBits: = 0 // No status bits supported for Mitsubishi protocol

SerialEncNumBits: = 0 // Fixed number of position bits returned

Acc84E[i].Chan[j].SerialEncCmd would be set to $321400 for continuous position reporting. (It may

report back as $321000 if the ready status bit is not set.)
Hex Digit ($) 3 2 1 4 0 0 - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value 0 0 1 1 0 0 1 0 0 0 0 1 - 1 - - - - 0 0 0 0 0 0 - -
Component: SerialEncCmdWord Parity TM TE GB Ena Status NumBits

If the SerialEncCmdWord component is set to $BA and triggered for 10 consecutive cycles with 55.5

microseconds interval or more, the ABS lost alarm is cleared. This should be done in “one-shot” mode,

making the element equal to $BA3400 and triggered for 10 consecutive cycles with 55.5 microseconds

interval or more.

If the SerialEncCmdWord component is set to $7A and triggered for 10 consecutive cycles with

222±1.0μsec interval, the encoder/motor ID is sent back from encoder to controller. In order to exit from

this mode, any other mode command ($02,$8A,$92,$A2,$2A,$32) should be triggered for 10 consecutive

cycles with 222±1.0μsec interval after which normal cyclic position reporting could be resumed. This

should be done in “one-shot” mode, making the element equal to $7A3400 and triggered for 10

consecutive cycles with 222 microseconds interval. Once encoder ID is retrieved, any other mode

command (for example $323400) should be triggered for 10 consecutive cycles with 222±1.0μsec interval

to exit the encoder ID reporting mode.

When the reset operation is done, the component should report as $BA2000, $7A2000 respectively.

ACC-84E User Manual

Software Setup 47

Hardware-Status Data Structure

Status elements of ACC-84E are read only elements where the received data and status flags are written

by FPGA at every trigger event. There are no global status registers and only channel specific registers

are defined.

Single-Channel Status Elements

Some aspects of the serial-encoder, such as position data, alarm, encoder ID and some additional

information, can be read individually for each channel.

The type of data which can be read from these single-channel status elements, is dependent on each

specific protocol and mode of operation within the same protocol as different modes of operation could

result in different contents in these status elements. Each channel of the FPGA has four 24-bit status

elements:

 Acc84E[i].Chan[j].SerialEncDataA

 Acc84E[i].Chan[j].SerialEncDataB

 Acc84E[i].Chan[j].SerialEncDataC

 Acc84E[i].Chan[j].SerialEncDataD

Depending on each protocol mode setting in Acc84E[i].SerialEncCtrl and

Acc84E[i].Chan[j].SerialEncCmd that specifies exactly how the channel’s serial encoder interface will

operate, different data formats will be presented in the data registers. Not all data registers are used in

every protocol.

ACC-84E User Manual

Software Setup 48

POWER TURBO

Power PMAC

ACC-84E

Data Register

Channel

1 (j=0) 2 (j=1) 3 (j=2) 4 (j=3)

ACC84E[0] $78C00

Chan[j].SerialEncDataA Y:$78C00 Y:$78C04 Y:$78C08 Y:$78C0C

Chan[j].SerialEncDataB Y:$78C01 Y:$78C05 Y:$78C09 Y:$78C0D

Chan[j].SerialEncDataC Y:$78C02 Y:$78C06 Y:$78C0A Y:$78C0E

Chan[j].SerialEncDataD Y:$78C03 Y:$78C07 Y:$78C0B Y:$78C0F

ACC84E[4] $79C00

Chan[j].SerialEncDataA Y:$79C00 Y:$79C04 Y:$79C08 Y:$79C0C

Chan[j].SerialEncDataB Y:$79C01 Y:$79C05 Y:$79C09 Y:$79C0D

Chan[j].SerialEncDataC Y:$79C02 Y:$79C06 Y:$79C0A Y:$79C0E

Chan[j].SerialEncDataD Y:$79C03 Y:$79C07 Y:$79C0B Y:$79C0F

ACC84E[8] $7AC00

Chan[j].SerialEncDataA Y:$7AC00 Y:$7AC04 Y:$7AC08 Y:$7AC0C

Chan[j].SerialEncDataB Y:$7AC01 Y:$7AC05 Y:$7AC09 Y:$7AC0D

Chan[j].SerialEncDataC Y:$7AC02 Y:$7AC06 Y:$7AC0A Y:$7AC0E

Chan[j].SerialEncDataD Y:$7AC03 Y:$7AC07 Y:$7AC0B Y:$7AC0F

ACC84E[12] $7BC00

Chan[j].SerialEncDataA Y:$7BC00 Y:$7BC04 Y:$7BC08 Y:$7BC0C

Chan[j].SerialEncDataB Y:$7BC01 Y:$7BC05 Y:$7BC09 Y:$7BC0D

Chan[j].SerialEncDataC Y:$7BC02 Y:$7BC06 Y:$7BC0A Y:$7BC0E

Chan[j].SerialEncDataD Y:$7BC03 Y:$7BC07 Y:$7BC0B Y:$7BC0F

ACC84E[1] $78D00

Chan[j].SerialEncDataA Y:$78D00 Y:$78D04 Y:$78D08 Y:$78D0C

Chan[j].SerialEncDataB Y:$78D01 Y:$78D05 Y:$78D09 Y:$78D0D

Chan[j].SerialEncDataC Y:$78D02 Y:$78D06 Y:$78D0A Y:$78D0E

Chan[j].SerialEncDataD Y:$78D03 Y:$78D07 Y:$78D0B Y:$78D0F

ACC84E[5] $79D00

Chan[j].SerialEncDataA Y:$79D00 Y:$79D04 Y:$79D08 Y:$79D0C

Chan[j].SerialEncDataB Y:$79D01 Y:$79D05 Y:$79D09 Y:$79D0D

Chan[j].SerialEncDataC Y:$79D02 Y:$79D06 Y:$79D0A Y:$79D0E

Chan[j].SerialEncDataD Y:$79D03 Y:$79D07 Y:$79D0B Y:$79D0F

ACC84E[9] $7AD00

Chan[j].SerialEncDataA Y:$7AD00 Y:$7AD04 Y:$7AD08 Y:$7AD0C

Chan[j].SerialEncDataB Y:$7AD01 Y:$7AD05 Y:$7AD09 Y:$7AD0D

Chan[j].SerialEncDataC Y:$7AD02 Y:$7AD06 Y:$7AD0A Y:$7AD0E

Chan[j].SerialEncDataD Y:$7AD03 Y:$7AD07 Y:$7AD0B Y:$7AD0F

ACC84E[13] $7BD00

Chan[j].SerialEncDataA Y:$7BD00 Y:$7BD04 Y:$7BD08 Y:$7BD0C

Chan[j].SerialEncDataB Y:$7BD01 Y:$7BD05 Y:$7BD09 Y:$7BD0D

Chan[j].SerialEncDataC Y:$7BD02 Y:$7BD06 Y:$7BD0A Y:$7BD0E

Chan[j].SerialEncDataD Y:$7BD03 Y:$7BD07 Y:$7BD0B Y:$7BD0F

ACC84E[2] $78E00

Chan[j].SerialEncDataA Y:$78E00 Y:$78E04 Y:$78E08 Y:$78E0C

Chan[j].SerialEncDataB Y:$78E01 Y:$78E05 Y:$78E08 Y:$78E0D

Chan[j].SerialEncDataC Y:$78E02 Y:$78E06 Y:$78E09 Y:$78E0E

Chan[j].SerialEncDataD Y:$78E03 Y:$78E07 Y:$78E0A Y:$78E0F

ACC84E[6] $79E00

Chan[j].SerialEncDataA Y:$79E00 Y:$79E04 Y:$79E0B Y:$79E0C

Chan[j].SerialEncDataB Y:$79E01 Y:$79E05 Y:$79E0C Y:$79E0D

Chan[j].SerialEncDataC Y:$79E02 Y:$79E06 Y:$79E0D Y:$79E0E

Chan[j].SerialEncDataD Y:$79E03 Y:$79E07 Y:$79E0E Y:$79E0F

ACC84E[10] $7AE00

Chan[j].SerialEncDataA Y:$7AE00 Y:$7AE04 Y:$7AE08 Y:$7AE0C

Chan[j].SerialEncDataB Y:$7AE01 Y:$7AE05 Y:$7AE09 Y:$7AE0D

Chan[j].SerialEncDataC Y:$7AE02 Y:$7AE06 Y:$7AE0A Y:$7AE0E

Chan[j].SerialEncDataD Y:$7AE03 Y:$7AE07 Y:$7AE0B Y:$7AE0F

ACC84E[14] $7BE00

Chan[j].SerialEncDataA Y:$7BE00 Y:$7BE04 Y:$7BE08 Y:$7BE0C

Chan[j].SerialEncDataB Y:$7BE01 Y:$7BE05 Y:$7BE09 Y:$7BE0D

Chan[j].SerialEncDataC Y:$7BE02 Y:$7BE06 Y:$7BE0A Y:$7BE0E

Chan[j].SerialEncDataD Y:$7BE03 Y:$7BE07 Y:$7BE0B Y:$7BE0F

ACC-84E User Manual

Software Setup 49

SSI Protocol
For an SSI encoder, Acc84E[i].Chan[j].SerialEncDataA is configured as follows:

Hex Digit ($) - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Data P

23

P

22

P

21

P

20

P

19

P

18

P

17

P

16

P

15

P

14

P

13

P

12

P

11

P

10

P

9

P

8

P

7

P

6

P

5

P

4

P

3

P

2

P

1

P

0
- -

Component: Single/Multi-Turn Position

Acc84E[i].Chan[j].SerialEncDataB is configured as follows:
Hex Digit ($) - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 7-4 3-0

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 - -

Bit Data E
0

- - - - - - - - - - - - - - -
P
31

P
30

P
29

P
28

P
27

P
26

P
25

P
24

- -

Component: PE Single/Multi-Turn Position

Acc84E[i].Chan[j].SerialEncDataC and Acc84E[i].Chan[j].SerialEncDataD status registers are not used in SSI

Protocol.

Bits Pn represent the bits of single-turn and multi-turn position.

Bit E0 represents the parity error bit.

ACC-84E User Manual

Software Setup 50

EnDat 2.1/2.2 Protocol
For an EnDat 2.1/2.2 encoder, Acc84E[i].Chan[j].SerialEncDataA is configured as follows:

Hex Digit ($) - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Data P

23

P

22

P

21

P

20

P

19

P

18

P

17

P

16

P

15

P

14

P

13

P

12

P

11

P

10

P

9

P

8

P

7

P

6

P

5

P

4

P

3

P

2

P

1

P

0
- -

Component: Single/Multi-Turn Position

Bit Bit Data Component Description

[23:0] Pn - Single/Multi-Turn Position

Acc84E[i].Chan[j].SerialEncDataB is configured as follows:
Hex Digit ($) - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 7-4 3-0

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 - -

Bit Data E

5

E

4

E

3

E

2

E

1

E

0
- -

P

39

P

38

P

37

P

36

P

35

P

34

P

33

P

32

P

31

P

30

P

29

P

28

P

27

P

26

P

25

P

24
- -

Component: TE CE CE1 CE2 EB1 EB2 Single/Multi-Turn Position

Bit Bit Data Component Description

[15:0] Pn - Single/Multi-Turn Position

18 E0 EB2 “Error bit 1” reported by the encoder [2.2 only]

19 E1 EB1 “Error bit 2” reported by the encoder

20 E2 CE2 CRC error detected by the IC for the 2nd additional information word [2.2 only]

21 E3 CE1 CRC error detected by the IC for the 1st additional information word [2.2 only]

22 E4 CE CRC error detected by the IC for the position information word

23 E5 TE Timeout error detected by the IC

For the EnDat2.2 protocol, Acc84E[i].Chan[j].SerialEncDataC is used for the first additional

information word if this is requested of the encoder with an MRS code in

Acc84E[i].Chan[j].SerialEncCmd. This register is never used with the EnDat2.1 protocol.

For an EnDat 2.2 encoder, Acc84E[i].Chan[j].SerialEncDataC is configured as follows:
Hex Digit ($) - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 7-4 3-0

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 - -

Bit Data W

0

R

0

B

0

A

4

A

3

A

2

A

1

A

0

I

15

I

14

I

13

I

12

I

11

I

10

I

9

I

8

I

7

I

6

I

5

I

4

I

3

I

2

I

1

I

0
- -

Component: WN RM BY MRS Acknowledge Additional Information 1 Word

Bit R0 is the “RM” (reference mark) status bit.

Bit W0 is the “warning” status bit.
Bit Bit Data Component Description

[15:0] In - Additional Information 1 Word

[20:16] An MRS
Acknowledge

An represent acknowledgement bits for the MRS code in
Acc84E[i].Chan[j].SerialEncCmd. The value of the acknowledgement code is $40 (64)

less than the value of the commanded MRS code. For example, if the MRS code is $42
(66), the acknowledgement code is $02 (2).

21 B0 BY Busy status bit

22 R0 RM Reference mark detection status bit.

23 W0 WN Warning status bit

ACC-84E User Manual

Software Setup 51

The following table provides details of the information and acknowledgement words for each of the MRS

command codes for the 1st additional information word.

Serial Encoder Data Register C: Additional Information 1

Command

code

Acknowledgement

of MRS Code

Bit[20:16],

decimal

Information/Type
Byte 1

[I15:I8]

Byte 2

[I7:I0]

$41 1 Diagnosis Address Data

$42 2 Position Value 2 Word 1 LSB MSB data LSB data

$43 3 Position Value 2 Word 2 MSB data LSB data

$44 4 Position Value 2 Word 3 MSB MSB data LSB data

$45 5 Memory parameter Address LSB data

$46 6 Memory parameter Address MSB data

$47 7 MRS Code MRS Code Any

$48 8 Acknowledge of test command Port Address Any

$49 9 Test values word 1 LSB MSB data LSB data

$4A 10 Test values word 2 MSB data LSB data

$4B 11 Test values word 3 MSB MSB data LSB data

$4C 12 Temperature sensor 1 MSB data LSB data

$4D 13 Temperature sensor 2 MSB data LSB data

$4F 15 Stop additional information 1 Any Any

For the EnDat2.2 protocol, Acc84E[i].Chan[j].SerialEncDataD is used for the second additional

information word if this is requested of the encoder with an MRS code in

Acc84E[i].Chan[j].SerialEncCmd. This register is never used with the EnDat2.1 protocol.

For an EnDat 2.2 encoder, Acc84E[i].Chan[j].SerialEncDataD is configured as follows:

Hex Digit ($) - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 7-4 3-0

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 - -

Bit Value W

0

R

0

B

0

A

4

A

3

A

2

A

1

A

0

I

15

I

14

I

13

I

12

I

11

I

10

I

9

I

8

I

7

I

6

I

5

I

4

I

3

I

2

I

1

I

0
- -

Component: WN RM BY MRS Acknowledge Additional Information 2 Word

Bit Bit Data Component Description

[15:0] In - Additional Information 2 Word

[20:16] An MRS

Acknowledge

An represent bits of the acknowledgement of the MRS code in Acc84E[i].Chan[j].SerialEncCmd.

The value of the acknowledgement code is $40 (64) less than the value of the commanded MRS
code. For example, if the MRS code is $53 (83), the acknowledgement code is $13 (19).

21 B0 BY Busy status bit

22 R0 RM Reference mark detection status bit.

23 W0 WN Warning status bit

ACC-84E User Manual

Software Setup 52

The following table provides details of the information and acknowledgement words for each of the MRS

command codes for the 2nd additional information word.

Serial Encoder Data Register D: Additional Information 2

Command

code

Acknowledgement

of MRS Code

Bit[20:16], binary

Information/Type
Byte 1

[15:8]

Byte 2

[7:0]

$51 17 Commutation
U V W Not assigned

Not assigned
15 14 13 [12:8]

$52 18 Acceleration MSB data LSB data

$53 19
Commutation &

Acceleration

U U W

MSB

Acceleration

data

LSB

acceleration

data
15 14 13 [12:8]

$54 20
Limit position

signals

L1 L2 Not assigned
Not assigned

15 14 [13:8]

$55 21

Limit position

signals &

Acceleration

L1 L2

MSB

Acceleration

data

LSB

acceleration

data
15 14 13 [12:8]

$5F 31
Stop additional

information 2
Any Any

When used in the Script environment, Acc84E[i].Chan[j].SerialEncDataD is a 24-bit element. When

used in the C environment, it is a 32-bit element, with real data in the high 24 bits, so its value in the C

environment is 256 times greater than its value in the Script environment.

In Power PMAC, Acc84E[i].Chan[j].SerialEncDataD will report as “nan” (not-a-number) if no board

with this index is present.

ACC-84E User Manual

Software Setup 53

Yaskawa Sigma II/III/V Protocol
For the Yaskawa Sigma II/III/V protocol, the data format in this element depends on the particular type of

the encoder and its reporting mode.

Yaskawa Sigma II absolute encoder with 17 bits per revolution

For an Absolute Yaskawa Sigma II encoder with 17 bits per revolution and 16 bits of turns count in

position-reporting (P1) mode, Acc84E[i].Chan[j].SerialEncDataA is configured as follows:
Hex Digit ($) - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Data M

2

M

1

M

0

S

16

S

15

S

14

S

13

S

12

S

11

S

10

S

9

S

8

S

7

S

6

S

5

S

4

S

3

S

2

S

1

S

0
- - - - - -

Component: Multi-Turn Pos Single-Turn Position

Bit Bit Data Component Description

[20:4] Sn Single-Turn

Position

Bits Sn represent the bits of single-turn position

[23:21] Mn Multi-Turn

Position

Bits Mn represent bits of the multi-turn position.

Acc84E[i].Chan[j].SerialEncDataB is configured as follows:
Hex Digit ($) - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 7-4 3-0

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 - -

Bit Data E
2

E
1

E
0

- - - - - - - -
M
15

M
14

M
13

M
12

M
11

M
10

M
9

M
8

M
7

M
6

M
5

M
4

M
3

- -

Component: TE CE EB Multi-Turn Position

Bit Bit Data Component Description

[12:0] Mn Multi-Turn
Position

Bits Mn represent the bits of multi-turn position.

21 E0 EB Coding error reported by the encoder

22 E1 CE CRC error detected by the IC

23 E2 TE Timeout error detected by the IC

Yaskawa Sigma II incremental encoder with 17 bits per revolution

For an in position-reporting (P1) mode, Acc84E[i].Chan[j].SerialEncDataA is configured as follows:
Hex Digit ($) - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Data
-

S
16

S
15

S
14

S
13

S
12

S
11

S
10

S
9

S
8

S
7

S
6

S
5

S
4

S
3

S
2

S
1

S
0

- - U V W Z - -

Component: Single-Turn Position Hall & Index

Bit Bit Data Component Description

0 Z Index Z represents the encoder’s “zero” (index) pulse marker signal state.

[3:1] UVW Hall U, V, and W represent the commutation “Hall” sensor signal states

[22:6] Sn Single-turn

Position

Bits Sn represent the bits of single-turn position

Acc84E[i].Chan[j].SerialEncDataB is configured as follows:
Hex Digit ($) - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Data E
2

E
1

E
0

- - - - - - - - - -
C
16

C
15

C
14

C
13

C
12

C
11

C
10

C
9

C
8

C
7

C
6

- -

Component: TE CE EB Compensation Position

ACC-84E User Manual

Software Setup 54

Bit
Bit

Data
Component Description

[10:0] Cn Compensation

Position

Bits Cn represent the bits of “compensation” position, captured on

the first index pulse.

21 E0 EB Coding error reported by the encoder

22 E1 CE CRC error detected by the IC

23 E2 TE Timeout error detected by the IC

Yaskawa Sigma III or V absolute encoder with 20 bits per revolution

For an Absolute Yaskawa Sigma III or V encoder with 20 bits per revolution and 16 bits of turns count in

position-reporting (P1) mode, Acc84E[i].Chan[j].SerialEncDataA is configured as follows:
Hex Digit ($) - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Data S

19

S

18

S

17

S

16

S

15

S

14

S

13

S

12

S

11

S

10

S

9

S

8

S

7

S

6

S

5

S

4

S

3

S

2

S

1

S

0
- - - - - -

Component: Single-Turn Position

Bits Sn represent the bits of single-turn position.

Bit Bit Data Component Description

[23:4] Sn Single-Turn

Position

Bits Sn represent the bits of single-turn position

Acc84E[i].Chan[j].SerialEncDataB is configured as follows:
Hex Digit ($) - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Data E
2

E
1

E
0

- - - - -
M
15

M
14

M
13

M
12

M
11

M
10

M
9

M
8

M
7

M
6

M
5

M
4

M
3

M
2

M
1

M
0

- -

Component: TE CE EB Multi-Turn Position

Bit Bit Data Component Description

[15:0] Mn Multi-Turn

Position

Bits Mn represent the bits of multi-turn position.

21 E0 EB Coding error reported by the encoder

22 E1 CE CRC error detected by the IC

23 E2 TE Timeout error detected by the IC

ACC-84E User Manual

Software Setup 55

For a Yaskawa Sigma II/III/V encoder in position-reporting (P1) mode,

Acc84E[i].Chan[j].SerialEncDataC is configured as follows:
Hex Digit ($) - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value
- - - - - - - -

A

7

A

6

A

5

A

4

A

3

A

2

A

1

A

0

T

7

T

6

T

5

T

4

T

3

T

2

T

1

T

0
- -

Component: Alarm Code Temperature

Bits Tn represent bits of the returned temperature value (in degrees C); bits An represent bits of the alarm

code.

For an absolute encoder, the alarm-code bits have the following meanings:
Bit Error Name Type Alarm Type Clear Action Notes

8 Backup Battery Alarm Alarm EEPROM RESET command Backup battery was down, internal data was lost

9 Encoder Error Alarm EEPROM RESET command Error in encoder

10 Battery Level Warning Warning Flag - Battery voltage drop

11 Absolute Error Alarm Session Flag Power cycle Possible error in position, if doesn’t get cleared

in one revolution

12 Over Speed Alarm Session Flag Power cycle

13 Overheat Alarm Flag -

14 Reset Complete Warning Session Flag Power cycle Indicates a reset due to RESET command

15 Fixed at “0” Set at zero

For an incremental encoder, the alarm-code bits have the following meanings:
Bit Error Name Type Alarm Type Clear Action Notes

8 Fixed at “1” - - - -

9 Encoder Error Alarm Session Flag Power cycle Error in encoder

10 Fixed at “0” - - - -

11 Position Error Alarm Session Flag Power cycle Possible error in position or Hall sensor

12 Fixed at “0” - - -

13 Fixed at “0” - - -

14 Origin not passed flag Warning - - The origin has not been passed in this session

yet

15 Fixed at “0” Set at zero

The temperature comes back in centigrade units but it rolls over to negative numbers at 215°C. Here is an

example of how to read the information:

if (Temp<=215)

{

 Temperature = Temp;

}

Else

{

 Temperature = Temp – 256;

}

ACC-84E User Manual

Software Setup 56

Tamagawa Protocol
For a Tamagawa FA-Coder encoder with 17 bits per revolution, Acc84E[i].Chan[j].SerialEncDataA is

configured as follows:
Hex Digit ($) - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value
- - - - - - -

S

16

S

15

S

14

S

13

S

12

S

11

S

10

S

9

S

8

S

7

S

6

S

5

S

4

S

3

S

2

S

1

S

0
- -

Component: Single-Turn Position

Bit Bit Data Component Description

[16:0] Sn Single-Turn
Position

Bits Sn represent the bits of single-turn position

For a Tamagawa FA-Coder encoder with 16 bits of multi-turn count,

Acc84E[i].Chan[j].SerialEncDataB is configured as follows:
Hex Digit ($) - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value
- - - - - - - -

M

15

M

14

M

13

M

12

M

11

M

10

M

9

M

8

M

7

M

6

M

5

M

4

M

3

M

2

M

1

M

0
- -

Component: Multi-Turn Position

Bit Bit Data Component Description

[16:0] Mn Multi-turn

Position

Bits Mn represent the bits of multi-turn position.

For a Tamagawa encoder, Acc84E[i].Chan[j].SerialEncDataC is configured as follows:
Hex Digit ($) - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value E

1

E

0
- -

S

7

S

6

S

5

S

4

A

7

A

6

A

5

A

4

A

3

A

2

A

1

A

0

I

7

I

6

I

5

I

4

I

3

I

2

I

1

I

0
- -

Component: TE CE Status Code Alarm Code Encoder ID

Bit Bit Data Component Description

[7:0] In Encoder ID Bits In represent bits of the returned encoder ID code (Fixed to $11)

[15:8] An Alarm Code Bits An represent bits of the alarm code

[19:16] Sn Status Code Bits Sn represent bits of the status code

22 E0 CE CRC error detected by the IC

23 E1 TE Timeout error detected by the IC

ACC-84E User Manual

Software Setup 57

Alarm Code Description

Bit Bit Data

State when

error is

occurred

Description

8 A0 1

Over-speed (OS)

When the shaft of the encoder is rotated over the electric spec of Multi-Turn signal, after Main

Power is turned off and during External Battery is on, logic "1." is generated and can be
transmitted after Main Power is turned on. As this error may not be detected, it is useful for only

ref. Use error reset mode(s) to clear this latched error.

9 A1 1

Full Absolute Status (FS)

When Main Power, is turned on during the shaft of the encoder is rotated at more than 100 rpm,
logic "1" comes out. The accuracy of One Revolution data is 5 bits during logic "1" comes out.

As One Revolution data returns to 17 bits resolution, this error status is automatically released.
For clearing the alarm bit, slow rotational speed down less than 100* rpm, and wait to release the

error status.

10 A2 1

Counting Error (CE)

When One Revolution data is wrong because of any mal-function or defect during Main Power is
on, logic "1" comes out depending upon the following I or II.

I. Error is detected at each mechanical angle of 45 during the shaft rotational speed is more

than 100 rpm. The error status is automatically released by returning the deviation of
mechanical angle within ± 22.5 ' (typ.).

II. Error is always detected during the shaft rotational speed is less than 100 rpm. If the

deviation of mechanical angle is more than ± 0.7 ' (typ.), logic "1" comes out. In this case,
use error reset mode(s) to clear this latched error.

11 A3 1

Counter Over-flow (OF)

When Multi-Turn counter is overflown, logic "1" comes out. Detecting it during Main Power is
off, it can be transmitted after Main Power is turned on. Detecting it once, it is kept till Error

Reset. While the counter counts 0-65,535 cyclically.

12 A4 0 -

13 A5 1

Multi-turn Error (ME)
When any bit of Multi-Turn signal is jumped during Main Power is on, logic "1" comes out.

During Main Power is off, it is not executed. The check for bit jumping is performed in each

12.8μsec.
Use error reset mode(s) to clear this latched error.

14 A6 1

Battery Error (BE)

When the voltage of capacitor integrated in the encoder is 2.5 ± 0.2 V or less during Main Power

is off, logic "1" is generated and can be transmitted after Main Power is turned on. Multi- Turn
error nay be occurred at same time with it.

Error Reset and Multi-turn Data Reset. Needed to check or replace Battery.

15 A7 1

Battery Alarm (BA)
When the voltage of External Battery is 3.1 ±0.1 V or less during Main Power is on, logic "1"

comes out. Returning the voltage of External battery to normal, the error status is automatically

released.

Status Code Description

Bit Bit

Data

State when

error is

occurred

Description

16 S4 1 ca1: Demiliter error in Request Frame

17 S5 1 ca0 Parity error in Request Frame.

18 S6 1 ea1: Logic OR of Multi-turn error, Battery error or Battery alarm

(check alarm word for identification of exact alarm)

19 S7 1 ea0: Counting error

ACC-84E User Manual

Software Setup 58

Panasonic Protocol
For a Panasonic encoder with 17 bits per revolution, Acc84E[i].Chan[j].SerialEncDataA is configured

as follows (if single turn data has more resolution, higher bits include data):
Hex Digit ($) - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value
- - - - - - -

S

16

S

15

S

14

S

13

S

12

S

11

S

10

S

9

S

8

S

7

S

6

S

5

S

4

S

3

S

2

S

1

S

0
- -

Component: Single-Turn Position

Bit Bit Data Component Description

[16:0] Sn Single-Turn

Position

Bits Sn represent the bits of single-turn position

For a Panasonic encoder with 16 bits of multi-turn count, Acc84E[i].Chan[j].SerialEncDataB is

configured as follows:
Hex Digit ($) - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value
- - - - - - - -

M

15

M

14

M

13

M

12

M

11

M

10

M

9

M

8

M

7

M

6

M

5

M

4

M

3

M

2

M

1

M

0
- -

Component: Multi-Turn Position

Bit Bit Data Component Description

[16:0] Mn Multi-turn

Position

Bits Mn represent the bits of multi-turn position. Multi-turn position is only reported if

the SerialEncCmdWord component of Acc84E[i].Chan[j].SerialEncCmd is set to $2A,
in which case the encoder ID and alarm code are not reported.

Acc84E[i].Chan[j].SerialEncDataC is configured as follows:
Hex Digit ($) - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value E
1

E
0

- -
S
7

S
6

S
5

S
4

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

I
7

I
6

I
5

I
4

I
3

I
2

I
1

I
0

- -

Component: TE CE Status Code Alarm Code Encoder ID

Bit Bit Data Component Description

[7:0] In Encoder ID Bits In represent bits of the returned encoder ID code (Fiexd to $11)

[15:8] An Alarm Code Bits An represent bits of the alarm code

[19:16] Sn Status Code Bits Sn represent bits of the status code

22 E0 CE CRC error detected by the IC

23 E1 TE Timeout error detected by the IC

The encoder ID and alarm code values are only reported if the SerialEncCmdWord component of

Acc84E[i].Chan[j].SerialEncCmd is set to $52, in which case multi-turn data is not reported.

ACC-84E User Manual

Software Setup 59

Alarm Code Description

Bit Bit Data

State when

error is

occurred

Description

8 A0 1

Over-speed (OS)

When the shaft of the encoder is rotated over the electric spec of Multi-Turn signal, after Main

Power is turned off and during External Battery is on, logic "1." is generated and can be
transmitted after Main Power is turned on. As this error may not be detected, it is useful for only

ref. Use error reset mode(s) to clear this latched error.

9 A1 1

Full Absolute Status (FS)

When Main Power, is turned on during the shaft of the encoder is rotated at more than 100 rpm,
logic "1" comes out. The accuracy of One Revolution data is 5 bits during logic "1" comes out.

As One Revolution data returns to 17 bits resolution, this error status is automatically released.
For clearing the alarm bit, slow rotational speed down less than 100* rpm, and wait to release the

error status.

10 A2 1

Counting Error (CE)

When One Revolution data is wrong because of any mal-function or defect during Main Power is
on, logic "1" comes out depending upon the following I or II.

I. Error is detected at each mechanical angle of 45 during the shaft rotational speed

is more than 100 rpm. The error status is automatically released by returning the
deviation of mechanical angle within ± 22.5 ' (typ.).

II. Error is always detected during the shaft rotational speed is less than 100 rpm. If the

deviation of mechanical angle is more than ± 0.7 ' (typ.), logic "1" comes out. In this case,
use error reset mode(s) to clear this latched error.

11 A3 1

Counter Over-flow (OF)

When Multi-Turn counter is overflown, logic "1" comes out. Detecting it during Main Power is
off, it can be transmitted after Main Power is turned on. Detecting it once, it is kept till Error

Reset. While the counter counts 0-65,535 cyclically.

12 A4 0 -

13 A5 1

Multi-turn Error (ME)
When any bit of Multi-Turn signal is jumped during Main Power is on, logic "1" comes out.

During Main Power is off, it is not executed. The check for bit jumping is performed in each

12.8μsec.
Use error reset mode(s) to clear this latched error.

14 A6 1

Battery Error (BE)

When the voltage of capacitor integrated in the encoder is 2.5 ± 0.2 V or less during Main Power

is off, logic "1" is generated and can be transmitted after Main Power is turned on. Multi- Turn
error nay be occurred at same time with it.

Error Reset and Multi-turn Data Reset. Needed to check or replace Battery.

15 A7 1

Battery Alarm (BA)
When the voltage of External Battery is 3.1 ±0.1 V or less during Main Power is on, logic "1"

comes out. Returning the voltage of External battery to normal, the error status is automatically

released.

Status Code Description

Bit Bit Data

State when

error is

occurred

Description

16 S4 0 0

17 S5 0 0

18 S6 1
ea1: Logic OR of Multi-turn error, Battery error or Battery alarm (check alarm word for

identification of exact alarm)

19 S7 1 ea0: System Down

ACC-84E User Manual

Software Setup 60

Mitutoyo Protocol
For a Mitutoyo encoder, Acc84E[i].Chan[j].SerialEncDataA is configured as follows:

Hex Digit ($) - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value P

23

P

22

P

21

P

20

P

19

P

18

P

17

P

16

P

15

P

14

P

13

P

12

P

11

P

10

P

9

P

8

P

7

P

6

P

5

P

4

P

3

P

2

P

1

P

0
- -

Component: Single/Multi-Turn Position

Bit Bit Data Component Description

[23:0] Pn Position Data Bits Pn represent the bits of single-turn and multi-turn position.

For a Mitutoyo encoder, Acc84E[i].Chan[j].SerialEncDataB is configured as follows:
Hex Digit ($) - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value
- - - - - - - - - - - - - - - -

P

31

P

30

P

29

P

28

P

27

P

26

P

25

P

24
- -

Component: Single/Multi-Turn Position

Bit Bit Data Component Description

[7:0] Pn Position Data Bits Pn represent the bits of single-turn and multi-turn position.

Acc84E[i].Chan[j].SerialEncDataC is configured as follows:
Hex Digit ($) - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value E

1

E

0
- -

S

7

S

6

S

5

S

4

A

7

A

6

A

5

A

4

A

3

A

2

A

1

A

0

I

7

I

6

I

5

I

4

I

3

I

2

I

1

I

0
- -

Component: TE CE Status Code Alarm Code Encoder ID

Bit Bit Data Component Description

[7:0] In Encoder ID Bits In represent bits of the returned encoder ID code (Fixed to $11)

[15:8] An Alarm Code Bits An represent bits of the alarm code

[19:16] Sn Status Code Bits Sn represent bits of the status code

22 E0 CE CRC error detected by the IC

23 E1 TE Timeout error detected by the IC

Alarm Code Description for AT303A Encoders
Bit Bit Data State when

error is

occurred

Description

8 A0 1 Initialized error

9 A1 1 Disagreement data of photoelectric type and capacitance type

10 A2 1 Photoelectric error

11 A3 1 Electrostatic capacitance error

12 A4 1 CPU error

13 A5 1 EEPROM error

14 A6 1 ROM, RAM error

15 A7 1 Overspeed

ACC-84E User Manual

Software Setup 61

Alarm Code Description for AT503A Encoders
Bit Bit Data State when

error is

occurred

Description

8 A0 1 Initialized error

9 A1 1 Disagreement data of photoelectric type and capacitance type

10 A2 1 Photoelectric error

11 A3 1 Electrostatic capacitance error

12 A4 1 CPU error / ROM, RAM error

13 A5 1 EEPROM error

14 A6 1 Communication error

15 A7 1 Overspeed

Status Code Description
Bit Bit Data State when

error is

occurred

Description

16 S4 1 System error
Set “1 ” if fatal error generates in encoder.

If this error occurs, turning off the servo is necessary because data itself may have

problems.
The scale needs restart.(Either cycle power or execute the reset process using

SerialEncCmdWord set to $89 and follow the instructions in the Single-Channel Setup
Element section)

17 S5 0 Fixed “0”

18 S6 1 Communication error

Set “1 ” if mistake the data request (command field) cmd from controller.
At this case, transmit a request data by setting SerialEncCmdWord set to $01. If there

are not mistake in next command field, set “0".

19 S7 0 Fixed “0”

ACC-84E User Manual

Software Setup 62

BiSS-B/C Protocol
For a BiSS-B/C encoder, Acc84E[i].Chan[j].SerialEncDataA is configured as follows:

Hex Digit ($) - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value P

23

P

22

P

21

P

20

P

19

P

18

P

17

P

16

P

15

P

14

P

13

P

12

P

11

P

10

P

9

P

8

P

7

P

6

P

5

P

4

P

3

P

2

P

1

P

0
- -

Component: Single/Multi-Turn Position

Bit Bit Data Component Description

[23:0] Pn Position Data Bits Pn represent the bits of single-turn and multi-turn position.

For a BiSS-B/C encoder, Acc84E[i].Chan[j].SerialEncDataB is configured as follows:
Hex Digit ($) - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 7-4 3-0

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 - -

Bit Value E

1

E

0

S

5

S

4

S

3

S

2

S

1

S

0

P

39

P

38

P

37

P

36

P

35

P

34

P

33

P

32

P

31

P

30

P

29

P

28

P

27

P

26

P

25

P

24
- -

Component: TE CE Single/Multi-Turn Position

Bit Bit Data Component Description

[15:0] Pn Position Data Bits Pn represent the bits of single-turn and multi-turn position.

[21:16] Sn Status Bits Bits Sn represent encoder-specific status bits.

22 E0 CE CRC error detected by the IC

23 E1 TE Timeout error detected by the IC

Acc84E[i].Chan[j].SerialEncDataC and Acc84E[i].Chan[j].SerialEncDataD status registers are not used in BiSS

B/C Protocol.

Status Code Description for Renishaw BiSS encoders
Bit Bit Data State when

error is
occurred

Description

16 S0 0

(Active Low)

Warning: The Warning bit indicates that the encoder scale should be cleaned.

17 S1 0
(Active Low)

Error: The Error bit indicates that the absolute position data may not be valid, or the
temperature is above the maximum operating temperature of the encoder.

ACC-84E User Manual

Software Setup 63

Matsushita Protocol
For a Matsushita encoder with 17 bits per revolution, Acc84E[i].Chan[j].SerialEncDataA is configured

as follows (if single turn data has more resolution, higher bits include data):
Hex Digit ($) - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value M

6

M

5

M

4

M

3

M

2

M

1

M

0

S

16

S

15

S

14

S

13

S

12

S

11

S

10

S

9

S

8

S

7

S

6

S

5

S

4

S

3

S

2

S

1

S

0
- -

Component: Multi-Turn Position Single-Turn Position

Bit Bit Data Component Description

[16:0] Sn Single-Turn

Position

Bits Sn represent the bits of single-turn position

[23:17] Mn Multi-Turn
Position

Bits Mn represent the bits of multi-turn position

For a Panasonic encoder with 16 bits of multi-turn count, Acc84E[i].Chan[j].SerialEncDataB is

configured as follows:
Hex Digit ($) - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value
- - - - - - - - - - - - - - - -

M
14

M
13

M
12

M
11

M
10

M
9

M
8

M
7

- -

Component: Multi-Turn Position

Bit Bit Data Component Description

[7:0] Mn Multi-turn
Position

Bits Mn represent the bits of multi-turn position.

Acc84E[i].Chan[j].SerialEncDataC is configured as follows:
Hex Digit ($) - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value E

1

E

0
- - - - - -

A

7

A

6

A

5

A

4

A

3

A

2

A

1

A

0

S

3

S

2

S

1

S

0

I

3

I

2

I

1

I

0
- -

Component: TE CE Alarm Code Status Code Encoder ID

Bit Bit Data Component Description

[7:0] In Encoder ID Bits In represent bits of the returned encoder ID code (Fiexd to $11)

[15:8] An Alarm Code Bits An represent bits of the alarm code

[19:16] Sn Status Code Bits Sn represent bits of the status code

22 E0 CE CRC error detected by the IC

23 E1 TE Timeout error detected by the IC

The encoder ID and alarm code values are only reported if the SerialEncCmdWord component of

Acc84E[i].Chan[j].SerialEncCmd is set to $52, in which case multi-turn data is not reported.

ACC-84E User Manual

Software Setup 64

Alarm Code Description
Bit Bit Data State when

error is

occurred

Description

8 A0 1 Over-speed (OS)

Function: When revolving speed exceeds (6600r/min), "1” is output.

Detecting timing: During normal operation
Output: Latch

Reset: Reset I or Re-turn ON the main power supply.

9 A1 1 Preset Status (PS):

Function: Function: In case a logical error is included in scan data of M-sensors; or, in
case scan data detected three times do not coincide each other, “1” is output.

During that period or time, every data is unfixed. After the scanning has completed
properly and the data has been established it i3 reset to “0”.

Detection timing: During normal operation (at preset initial operation only) Output: Non

latch
Reset: Auto reset (Revolving speed is reduced to 300t/min or less)

When ABS signal fails to be read correctly power supply ON, due to a problem of the

encoder at such a foreign object or a failure of optical sensor etc., even when revolting

speed lowers 300 r/min or less, it may not be reset to “0”.

10 A2 1 Count Error 1 (CE1)

Function: Specific 1 bit of M-sensors and specific. 1 bit within ASIC are compared and

when the data are different from each other, "1” is output.
Detecting timing: During normal operation Output: Latch

Reset: Re-turn ON the main power supply.

11 A3 1 Count Error 2 (CE2)
Function: Consistency between “multi-turn count block” and “single-turn count block"

is monitored. To be more concretely;

1. Multi-turn count obtained by magnetic encoder
2. Multi-turn count obtained proximately by processing carry/borrow on single-turn

absolute value

By comparing 1 and 2 above, in case (difference between 1 and 2) >= 2 turns, on alarm
is emitted.

Detecting timing: During normal operation

Output: Latch
Reset: Re-turn ON the main power supply.

12 A4 0 -

13 A5 1 Overflow (OF)

Function: In case amount of revolution exceeds “-16383- + 16382”, “1” is output. Alter
overflow, the multi-tum counter functions as cyclic counter overflow flag allows to set

mask to encoder error bit: ea0 on output field.

Detecting timing: During normal/backup operation
Output: latch

Reset: Reset II

14 A6 1 System Down (SD)
Function: When an encoder gets into an emergency operation status and disables to

perform its function, “1” is output To be more concretely, voltage of the backup

capacitor within the encoder towers 2.8 V (TYP) or less.
Detecting timing: During backup operation

Output: Latch

Reset: Reset I (External battery was be checked or replaced with an new one.)

15 A7 1 Battery Alarm (BA)
Function: When voltage of the external battery decreases below 3.0V (TYP), "1” is

outputted.

Detecting timing: During backup operation
Output Latch

Reset: Reset I (External battery was be checked or replaced with an new one.)

Status Code Description
Bit Bit Data State when

error is

occurred

Description

4 S0 1 ea0: Logic OR of Over-speed (OS), System Down (SD), Batter Alarm (BA)

5 S1 1 ea1: Logic OR of Count Error 1 (CE1) and Count Error 2 (CE2) (check alarm word for
identification of exact alarm)

6 S2 0 0

7 S3 1 Preset Status (PS)

`

ACC-84E User Manual

Software Setup 65

Mitsubishi Protocol

Note

Mitsubishi Serial Encoder on HG- type servo motors can only be

queried at 55.5μsec±1.0μsec (18 kHz), 111μsec±1.0μsec (9 kHz) and

222μsec±1.0μsec (4.5 kHz). If the request cycle is other than the

above cycles the data will not be latched properly.

For a Mitsubishi HG- encoder with 17 bits per revolution, Acc84E[i].Chan[j].SerialEncDataA is

configured as follows:
Hex Digit ($) - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value S

23

S

22

S

21

S

20

S

19

S

18

S

17

S

16

S

15

S

14

S

13

S

12

S

11

S

10

S

9

S

8

S

7

S

6

S

5

S

4

S

3

S

2

S

1

S

0
- -

Component: Single-Turn Position

Bit Bit Data Component Description

[23:0] Sn Single-Turn

Position

Bits Sn represent the bits of single-turn position

Depending on the SerialEncCmdWord in single channel setup register, the single turn data is reported in 3

different modes:

Single-Turn Data in Lower 18 Bits of 24-Bit Word

$02 –single-turn data

$BA – for clearing alarms and reporting single-turn data

$2A – for reporting single-turn and multi-turn data
Hex Digit ($) - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value
- - - - - -

S

17

S

16

S

15

S

14

S

13

S

12

S

11

S

10

S

9

S

8

S

7

S

6

S

5

S

4

S

3

S

2

S

1

S

0
- -

Component: Single-Turn Position

Single-Turn Data in Lower 20 Bits of 24-Bit Word

$A2 – for reporting single-turn and multi-turn data
Hex Digit ($) - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value
- - - -

S

17

S

16

S

15

S

14

S

13

S

12

S

11

S

10

S

9

S

8

S

7

S

6

S

5

S

4

S

3

S

2

S

1

S

0
- - - -

Component: Single-Turn Position

ACC-84E User Manual

Software Setup 66

Single-Turn Data in Upper 20 Bits of 24-Bit Word

 $32 – for reporting single-turn and multi-turn data
Hex Digit ($) - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value S
17

S
16

S
15

S
14

S
13

S
12

S
11

S
10

S
9

S
8

S
7

S
6

S
5

S
4

S
3

S
2

S
1

S
0

- - - - - - - -

Component: Single-Turn Position

This method of reporting provides the best contiguous data between single-turn and multi-turn data which

can be very useful in both Turbo and Power PMAC Power-on Servo Position retrieval process using

built-in functionality.

For a Mitsubishi HG- encoder with 16 bits of multi-turn count, Acc84E[i].Chan[j].SerialEncDataB is

configured as follows:
Hex Digit ($) - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value
- - - - - - - -

M

15

M

14

M

13

M

12

M

11

M

10

M

9

M

8

M

7

M

6

M

5

M

4

M

3

M

2

M

1

M

0
- -

Component: Multi-Turn Position

Bit Bit Data Component Description

[16:0] Mn Multi-turn
Position

Bits Mn represent the bits of multi-turn position.

For a Mitsubishi HG-, Acc84E[i].Chan[j].SerialEncDataC is configured as follows:
Hex Digit ($) - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value E

1

E

0
- -

S

7

S

6

S

5

S

4

A

7

A

6

A

5

A

4

A

3

A

2

A

1

A

0

I

7

I

6

I

5

I

4

I

3

I

2

I

1

I

0
- -

Component: TE CE Status Code Alarm Code Encoder ID

Bit Bit Data Component Description

[7:0] In Encoder ID Bits In represent bits of the returned encoder ID code.

The Encoder ID is transmitted by the encoder for SerialEncCmdWord codes $92 and

$7A. After issuing one of those two commands, the Encoder ID is latched by the ACC-
84E and provided in bits [07:00] of this register. Once latched, it is always readable in

this register.

[15:8] An Alarm Code Bits An represent bits of the alarm code.
The Alarm Code is not transmitted by the encoder for SerialEncCmdWord codes $92

and $7A. Bits [15:08] are cleared for these two commands.

[19:16] Sn Status Code Bits Sn represent bits of the status code. The 4-bit data from the Status Field (SF) is

returned for all command codes.

22 E0 CE CRC error detected by the IC

23 E1 TE Timeout error detected by the IC

ACC-84E User Manual

Software Setup 67

Alarm Code Description
Bit Bit Data State when

error is

occurred

Description

 Alarm Name Check timing Details Action

8 A0 1 CPU Alarm Checked at power

on (latched)

Encoder internal

data damaged

(latched alarm)

Stop operation

9 A1 0 - - - -

10 A2 1 Data Alarm Checked at each

request

Data per revolution

error (Cleared

when cause of
alarm is

eliminated)

Stop operation

when received.

Discard received
data

11 A3 1 Encoder Thermal
Alarm

Check during
operation (10

second average)

Encoder section
hot (100±5°C)

(Cleared when

cause of alarm is
eliminated)

Stop operation

12 A4 1 Encoder Thermal

Warning

Check during

operation (30
minute continuous

average)

Encoder section

hot (85±5°C)
(Cleared when

cause of alarm is

eliminated)

Only warning, no

need to stop
operation. Take

necessary action to

cool down encoder
environment

13 A5 1 Multi-Revolution

Alarm

Checked at each

request

Multi-revolution

count data error

Only a warning.

No need to stop

operation.
Note: at next

power on, multi-

revolution data
may be deviated

14 A6 1 ABS Lost Alarm Checked at power

on

Multi-revolution

backup data
damaged (latched

alarm)

Stop operation

Clear with request
$BA

15 A7 1 Battery

Disconnected
Alarm

Checked during

operation (10-
second average)

Battery cable

disconnected.
Battery voltage

low (Cleared when
cause of alarm is

eliminated)

Only a warning.

No need to stop
operation.

Note: at next
power on, ABS

lost alarm may

occur

Status Code Description
Bit Bit Data State when

error is

occurred

Description

16 S4 1 ca1: Delimiter error in Request Frame

17 S5 1 ca0 Parity error in Request Frame.

18 S6 1 ea1: Logic OR of following error alarms: CPU Alarm, Data Alarm, Encoder Thermal

Alarm, Multi-Revolution Alarm, ABS Lost Alarm (check alarm word for identification

of exact alarm)

19 S7 1 ea0: Logic OR of following warning alarms: Encoder Thermal Warning, Battery
Disconnected Alarm (check alarm word for identification of exact alarm)

ACC-84E User Manual

Using the Resulting Position Information 68

USING THE RESULTING POSITION INFORMATION
Serial encoder position information is commonly used for both absolute power-on position and ongoing

position, and both for the servo and commutation algorithms. The following sections discuss the general

method of using the resulting position information for Power PMAC, Turbo PMAC and MACRO CPUs.

Using the ACC-84E with Power PMAC

Ongoing Commutation Phase Position

For the commutation algorithm’s ongoing phase position, Power PMAC reads the entire 32-bit register

specified by Motor[x].pPhasePos every phase cycle. In order to be able to handle rollover of this data

properly, the most significant bit (MSB) of this data must end up in bit 31 of the 32-bit result, shifted if

necessary. With most protocols, no shifting is necessary, but some will require a net “left shift” to achieve

this result.

To use serial encoder position from an ACC-84E FPGA-based interface for ongoing phase position, the

following saved setup elements must be specified:
 Motor[x].pPhaseEnc = Acc84E[i].Chan[j].SerialEncDataA.a

 Motor[x].PhaseEncRightShift = 8 // If encoder LSB in Register 8

 Motor[x].PhaseEncLeftShift = (32 - # of bits)

 Motor[x].PhasePosSf = 2048 / (Register LSBs per commutation cycle)

In the 24-bit ACC-84E, the LSB of the encoder data is generally found in bit 8 on the 32-bit data bus,

with unpredictable values in the lowest 8 bits of the bus. While this low “phantom” data is not known to

affect actual commutation performance in real systems, some users will want to remove this data with an

8-bit “shift right” operation. When this is done, a “shift left” operation must also be done to leave the

MSB of encoder data in bit 31 of the result. For purposes of computing the scale factor, the LSB of the

resulting (post-shift) 32-bit value should be used as the “LSB”.

ACC-84E User Manual

Using the Resulting Position Information 69

Power-On Commutation Phase Position

Because most serial encoders provide absolute position information, especially over one motor revolution,

they are commonly used to provide the absolute rotor-angle position at power-up for the commutation

algorithms. Doing this requires assigning proper values to several saved setup elements.

This section gives an overview of those settings; details can be found in the element descriptions in the

Software Reference Manual, the Setting Up Commutation chapter of the User’s Manual, and the

Hardware Reference Manual for the interface. In addition the motor setup routines in the IDE software

will walk you through this setup.

To use serial encoder position from an ACC-84E FPGA-based interface for absolute power-on phase

position, the following saved setup elements must be specified:
 Motor[x].pAbsPhasePos = Acc84E[i].Chan[j].SerialEncDataA.a

 Motor[x].AbsPhasePosFormat = $aabbccdd // Protocol-specific settings

 Motor[x].AbsPhasePosSf = 2048 / (LSBs per commutation cycle)

 Motor[x].AbsPhasePosOffset = (Difference between sensor zero and commutation zero)

For the format variable, the LSB of the encoder data is typically found in bit 8 of the 32-bit register, and

only enough bits to cover a single commutation cycle need to be used. (However, it does not hurt to

specify more bits than are required.) It is seldom required to use data from the next register.

Ongoing Servo Position

To use the serial encoder position for ongoing servo position, the data must first be processed in the

encoder conversion table. This is done with a “Type 1” single-register-read conversion from

SerialEncDataA. In order to be able to handle rollover of this data properly, the most significant bit

(MSB) of this data must end up in bit 31 of the 32-bit result, shifted if necessary. With most protocols, no

shifting is necessary, but some will require a net “left shift” to achieve this result.

To use serial encoder position from an ACC-84E FPGA-based interface for ongoing servo position, the

following saved setup elements must be specified:
 EncTable[n].Type = 1

 EncTable[n].pEnc = Acc84E[i].Chan[j].SerialEncDataA.a

 EncTable[n].index1 = (32 - # of bits) // Shift left # of bits

 EncTable[n].index2 = 8 // Shift right # of bits

 EncTable[n].ScaleFactor = 1/ (232 - # of bits) // For result in encoder LSBs

 Motor[x].pEnc = EncTable[n].a // Use table result for position-loop feedback

 Motor[x].pEnc2 = EncTable[n].a // Use table result for velocity-loop feedback

ACC-84E User Manual

Using the Resulting Position Information 70

Power-On Servo Position

Many serial encoders can provide absolute position over the entire range of travel of the motor. If so,

Power PMAC can execute an absolute power-on read of the encoder to establish the reference position,

eliminating the need for a homing search move.

This section gives an overview of those settings; details can be found in the element descriptions in the

Software Reference Manual, the Basic Motor Setup chapter of the User’s Manual, and the Hardware

Reference Manual for the interface. In addition the motor setup routines in the IDE software will walk

you through this setup.

To use serial encoder position from an ACC-84E FPGA-based interface for absolute power-on phase

position, the following saved setup elements must be specified:
 Motor[x].pAbsPos = Acc84E[i].Chan[j].SerialEncDataA.a

 Motor[x].AbsPosFormat = $aabbccdd // Protocol-specific settings

 Motor[x].AbsPosSf = (Motor units per sensor LSB)

 Motor[x].AbsPosOffset = (Difference between sensor zero and motor zero)

For the format variable, the LSB of the encoder data is typically found in bit 8 of the 32-bit

SerialEncDataA register. If the encoder provides more than 24 bits of absolute position data, the format

element permits data from SerialEncDataB to be used as well. Note, however, that the data in

SerialEncDataA must go all the way to bit 31 for this to work. In protocols such as Tamagawa and

Panasonic, which provide only 17 bits of data in SerialEncDataA and more in SerialEncDataB, the full

absolute position must be assembled in a user algorithm.

ACC-84E User Manual

Using the Resulting Position Information 71

Using the ACC-84E with Turbo PMAC

In Turbo PMAC, the absolute serial encoder data is brought in as an unfiltered parallel Y-word into the

Encoder Conversion Table (ECT) where it is processed for the PMAC to use for:

 On-going phase reference

 On-going position in the motor servo-loop

 Power-on absolute servo position

 Power-on phase reference

In general, encoder data is left-shifted 5 bits in the ECT to provide fractional data. This process can cause

saturation of certain registers with higher resolution absolute serial encoders, thus for this type of

encoders, it is recommended to process the data as unshifted. Moreover, special considerations need to be

taken in setting up commutation (for commutated motors, e.g. brushless).

The following flowchart summarizes the recommended method to use, regardless of the Multi-turn (MT)

data specification. It is only dependent on the Single-turn (ST) resolution (for rotary encoders) or protocol

resolution (for linear scales).

ST
Encoder Resolution

≥ 24 bits

NO YES
ST

Encoder Resolution
≥ 19 bits

NO

YES

Technique 2

Technique 1

Technique 3

Start Here

 Technique 1

This technique places the Least Significant Bit (LSB) of the serial data in bit 5 of the result

register providing the 5 bits of “non-existent” fraction.

 Technique 2

This technique places the LSB of the serial data in bit 0 of the result register, creating no

fractional bits. It requires a dedicated Encoder Conversion Table (ECT) entry for commutation.

 Technique 3

This technique processes the data for position similarly to Technique 1, but it requires a dedicated

ECT entry for commutation.

Note

Some applications may require deviating from the suggested setup

methods (e.g. extremely high resolution and speed requirements).

Contact Delta Tau for assistance with these special cases.

ACC-84E User Manual

Using the Resulting Position Information 72

Setup Summary

Encoder Conversion Table Processing:

Process Technique 1 Technique 2 Technique 3

ECT entry for

Servo Loop Feedback

From serial register A,

5-bit shift

From serial register A,

no shift

From serial register A,

5-bit shift

ECT entry for

Commutation Feedback
N/A

From serial register A,

18 bits, no shift,

Offset=ST-18

From serial register A,

18 bits, no shift,

Offset=ST-18

Note

ST is the Single-turn resolution (in bits) for rotary encoders.

Similarly, this would be the protocol resolution (in bits) for linear

scales.

The position and velocity pointers are then assigned to the “ECT for position” result:

Parameter Technique 1/2/3

Position (Ixx03) @ ECT position result

Velocity (Ixx04) @ ECT position result (typically, with single source feedback)

Commutation Source and Type (for commutated motors, e.g. brushless)
With technique 1, if the Single-turn + Multi-turn data bits fulfill 24 bits and are contiguous, then serial

data register A can be used as the commutation source. Otherwise, the resulting register from the ECT for

position is used for commutation (requires special settings for the commutation cycle size).

With techniques 2 and 3, the feedback source for commutation should come from its dedicated ECT.

Parameter Technique 1 Technique 2/3

Commutation

Source (Ixx83)

@ serial data register A if ST+MT ≥ 24 bits @ commutation

ECT result @ ECT position result if ST+MT < 24 bits

Commutation

Type (Ixx01)

= 3 (from Y register) if ST+MT ≥ 24 bits
=1 (from X register)

= 1 (from X register) if ST+MT < 24 bits

Note

Special considerations should be made if the Single-turn (ST) and

Multi-turn (MT) data bits are NOT contiguous (in consecutive

fields). Contact Delta Tau for assistance with these special cases.

Note

Multi-turn MT is equal to zero for encoders which do not possess

Multi-turn data bits.

ACC-84E User Manual

Using the Resulting Position Information 73

Resolution Scale Factor (SF)

Parameter Encoder Type Technique 1/3 Technique 2

Resolution

Scale Factor SF

Rotary

[counts/rev]
= 2ST = 2ST-5 = 2ST/32

Linear

[counts/user units]
= 1/RES = 1/(32*RES)

Where ST: is the rotary encoder Single-turn resolution in bits

RES: is the linear scale resolution, in user units (e.g. mm)

Commutation Cycle Size

Parameter Motor/Encoder Technique 1 Technique 2/3

Ixx70
Rotary = Number of pole pairs

Linear = 1

Ixx71

Rotary
= SF= 2ST if Ixx01=3 = 218

= 262144 = 32 * SF= 32 * 2ST if Ixx01=1

Linear

= ECL * SF= ECL/RES if Ixx01=3
= ECL * SF / 2Offset

= ECL/(RES*2Offset) = 32 * ECL * SF

= 32 * (ECL/RES)
if Ixx01=1

Where ST: is the rotary encoder Single-turn resolution in bits

RES: is the linear scale resolution, in user units (e.g. mm)

ECL: is the electrical cycle length of the linear motor, same units as RES (e.g. mm)

 Offset: is the ECT commutation Offset, it is (=ST-18 for rotary, or =RES-18 for linear)

 SF: is the encoder resolution scale factor (calculated previously)

Position and Velocity Scale Factors, Position Error Limit
With technique 2, and technique 3 (with encoder resolutions greater than 20 bits), it is recommended to

set the position and velocity scale factors to equal 1 and widen the position error limit. Otherwise, default

values should be ok for all other cases. This alleviates register saturation(s), allows for higher commanded

speed settings and easier PID (position-loop) tuning.

Parameter(s) Technique 1 Technique 2 Technique 3

Ixx08, Ixx09 = 96 = 1
= 96

= 1

for ST < 20

for ST ≥ 20

Ixx67 Default = 8388607
= Default

= 8388607

for ST < 20

for ST ≥ 20

Absolute Power-On Position and Phasing

Process Technique 1 Technique 2 Technique 3

Absolute Position Read
From serial register A,

automatic settings

From serial register A,

scaling required

From serial register A,

automatic settings

Absolute Phasing
Automatic settings,

depending on ST+MT

From ECT for Comm.,

automatic settings

From ECT for Comm.,

automatic settings

ACC-84E User Manual

Using the Resulting Position Information 74

Technique 1 Example

Channel 1 is driving a 25-bit (13-bit Single-turn, 12-bit Multi-turn) rotary serial encoder, or a linear scale

with similar protocol resolution (13 bits, 1 micron).

Encoder Conversion Table - for position (Technique 1)

 Conversion Type: Parallel position from Y word with no filtering

 Width in Bits: Single-turn/absolute resolution in bits (e.g. 13 bits)

 Offset Location of LSB: leave at zero

 Normal Shift (5 bits to the left)

 Source Address: serial data register A (see table below)

 Remember to click on Download Entry for the changes to take effect.

Turbo PAMC Base Address Channel

1 2 3 4

$78C00 Y:$78C00 Y:$78C04 Y:$78C08 Y:$78C0C

$79C00 Y:$79C00 Y:$79C04 Y:$79C08 Y:$79C0C

$7AC00 Y:$7AC00 Y:$7AC04 Y:$7AC08 Y:$7AC0C

$7BC00 Y:$7BC00 Y:$7BC04 Y:$7BC08 Y:$7BC0C

$78D00 Y:$78D00 Y:$78D04 Y:$78D08 Y:$78D0C

$79D00 Y:$79D00 Y:$79D04 Y:$79D08 Y:$79D0C

$7AD00 Y:$7AD00 Y:$7AD04 Y:$7AD08 Y:$7AD0C

$7BD00 Y:$7BD00 Y:$7BD04 Y:$7BD08 Y:$7BD0C

$78E00 Y:$78E00 Y:$78E04 Y:$78E08 Y:$78E0C

$79E00 Y:$79E00 Y:$79E04 Y:$79E08 Y:$79E0C

$7AE00 Y:$7AE00 Y:$7AE04 Y:$7AE08 Y:$7AE0C

$7BE00 Y:$7BE00 Y:$7BE04 Y:$7BE08 Y:$7BE0C

ACC-84E User Manual

Using the Resulting Position Information 75

This is a 2-line ECT entry, its equivalent script code:
I8000=$278C00 ; Unfiltered parallel pos of location Y:$78C00

I8001=$00D000 ; Width and Offset. Processed result at $3502

Typically, the position and velocity pointers are set to the processed data address (e.g. $3502):
I100=1 ; Mtr#1 Active. Remember to activate the channel to see feedback

I103=$3502 ; Mtr#1 position loop feedback address

I104=$3502 ; Mtr#1 velocity loop feedback address

Note

At this point, you should be able to move the motor/encoder shaft by

hand and see ‘motor’ counts in the position window.

Counts per User Units (Technique 1)
With technique 1, the user should expect to see 2ST counts per revolution for rotary encoders, and

1/Resolution counts per user unit for linear scales in the motor position window.

Examples: 25-bit rotary encoder (13-bit Single-turn): 213= 8,192 cts/rev

 1-micron linear scale: 1/0.001= 1,000 cts/mm

ACC-84E User Manual

Using the Resulting Position Information 76

Absolute Power-On Position Read (Technique 1)
With Technique 1, the absolute power-on read can be performed using PMAC’s automatic settings

(Ixx80, Ixx10 and Ixx95).

Example 1: Channel 1 driving a 25-bit (13-bit single turn, 12-bit multi-turn) rotary serial encoder:

I180=2 ; Absolute power-on read enabled

I110=$78C00 ; Absolute power-on position address (ch1 serial data register A)

I195=$990000 ; Parallel Read, 25 bits, Signed, from Y-Register –User Input

Bit 23: =1 Signed
 =0 Unsigned

1 0 0 1 1 0 0 1

Bit 22: =1 X-Register
 =0 Y-Register

Bits16-21: Number of Bits to read
(Resolution 25 bits or 011001)

Ixx95
Binary:

Hex($): 9 9

0 0 0 0 0 0 0 0

0 0

0 0 0 0 0 0 0 0

0 0

Bits 0-15: reserved
(always 0)

In this mode, PMAC reads and reports 25 bits from the consecutive serial data registers:

Serial Register A
(Ch1 Y:$78C00)

Serial Register B
(Ch1 Y:$78C01)

25 bits
02347

With the setting of Ixx80=2, the actual position is reported automatically on Power-up. Otherwise, a #1$*

command is necessary to read and report the absolute position.

Example 2: Channel 1 driving an 18-bit (18-bit Single-turn, No Multi-turn) absolute rotary serial

encoder, or a similar protocol resolution (18 bits) linear scale:

I180=2 ; Absolute power-on read enabled

I110=$78C00 ; Absolute power-on position address (ch1 serial data register A)

I195=$120000 ; Parallel Read, 18 bits, Unsigned, from Y-Register –User Input

Bit 23: =1 Signed
 =0 Unsigned

0 0 0 1 0 0 1 0

Bit 22: =1 X-Register
 =0 Y-Register

Bits16-21: Number of Bits to read
(Resolution 18 bits or 010010)

Ixx95
Binary:

Hex($): 1 2

0 0 0 0 0 0 0 0

0 0

0 0 0 0 0 0 0 0

0 0

Bits 0-15: reserved
(always 0)

In this mode, PMAC reads and reports 18 bits from the first serial data register:

Serial Data Register A
(Ch1 Y:$78C00)

Serial Data Register B
(Ch1 Y:$78C01)

18 bits
02347

With this setting of Ixx80=2, the actual position is reported automatically on Power-up. Otherwise, a

#1$* command is necessary to read and report the absolute position.

ACC-84E User Manual

Using the Resulting Position Information 77

Note

With absolute serial encoders (no multi-turn data), the power-on

position format is set up for unsigned operation.

Note

The upper two fields in Ixx95 are the only relevant ones. Bits 0

through 15 are reserved and should always be set to 0.

Note

Some serial encoders use an external source for power. Make sure

that this power is applied prior to performing an absolute read on

power-up.

ACC-84E User Manual

Using the Resulting Position Information 78

Technique 2 Example

Channel 1 is driving a 37-bit (25-bit Single-turn, 12-bit Multi-turn) rotary serial encoder, or a linear scale

with similar protocol resolution (25 bits, 10 nanometer).

Encoder Conversion Table – for position (Technique 2)

 Conversion Type: Parallel position from Y word with no filtering

 Width in Bits: Single-turn/absolute resolution in bits (e.g. 25 bits)

 Offset Location of LSB: leave at zero

 No shifting

 Source Address: serial data register A (see table below)

 Remember to click on Download Entry for the changes to take effect.

Turbo PAMC Base Address Channel

1 2 3 4

$78C00 Y:$78C00 Y:$78C04 Y:$78C08 Y:$78C0C

$79C00 Y:$79C00 Y:$79C04 Y:$79C08 Y:$79C0C

$7AC00 Y:$7AC00 Y:$7AC04 Y:$7AC08 Y:$7AC0C

$7BC00 Y:$7BC00 Y:$7BC04 Y:$7BC08 Y:$7BC0C

$78D00 Y:$78D00 Y:$78D04 Y:$78D08 Y:$78D0C

$79D00 Y:$79D00 Y:$79D04 Y:$79D08 Y:$79D0C

$7AD00 Y:$7AD00 Y:$7AD04 Y:$7AD08 Y:$7AD0C

$7BD00 Y:$7BD00 Y:$7BD04 Y:$7BD08 Y:$7BD0C

$78E00 Y:$78E00 Y:$78E04 Y:$78E08 Y:$78E0C

$79E00 Y:$79E00 Y:$79E04 Y:$79E08 Y:$79E0C

$7AE00 Y:$7AE00 Y:$7AE04 Y:$7AE08 Y:$7AE0C

$7BE00 Y:$7BE00 Y:$7BE04 Y:$7BE08 Y:$7BE0C

ACC-84E User Manual

Using the Resulting Position Information 79

This is a 2-line ECT entry, its equivalent script code:

I8000=$2F8C00 ; Unfiltered parallel pos of location Y:$78C00

I8001=$19000 ; Width and Offset. Processed result at $3502

Typically, the position and velocity pointers are set to the processed data address (e.g. $3502). Also, with

technique 2, it is recommended to set the position and velocity scale factors to 1 and the position error

limit to its maximum value:

I100=1 ; Mtr#1 Active. Remember to activate the channel to see feedback

I103=$3502 ; Mtr#1 position loop feedback address

I104=$3502 ; Mtr#1 velocity loop feedback address

I108=1 ; Mtr#1 position-loop scale factor

I109=1 ; Mtr#1 velocity-loop scale factor

I167=8388607 ; Mtr#1 Position Error Limit

Note

At this point, you should be able to move the motor/encoder shaft by

hand and see ‘motor’ counts in the position window

Counts Per User Units (Technique 2)
With technique 2, the user should expect to see 2ST-5= 2ST/32 counts per revolution for rotary encoders,

and 1/(32*Resolution) counts per user unit for linear scales in the motor position window.

Examples: 37-bit rotary encoder (25-bit Single-turn): 225/32= 1,048,576 cts/rev

 10-nanometer linear scale: 1/(32*0.000010)= 3,125 cts/mm

ACC-84E User Manual

Using the Resulting Position Information 80

Encoder Conversion Table - for commutation (Technique 2)
Commutation with Turbo PMAC does not require high resolution data. With Technique 2, it is

recommended to fix it at 18 bits. This will also eliminate quantization noise.

Note

It is recommended to insert the commutation ECT entries after all of

the position ECT entries have been configured.

Assuming that eight encoders have been configured for position, the first ECT for commutation for the

first motor would be at entry number nine:

 Conversion Type: Parallel pos from Y word with no filtering

 Width in Bits: 18

 Offset Location of LSB: = Singleturn/protocol bits – 18 (e.g. 25-18=7)

 No shifting

 Source Address: serial data register A (same as position ECT for this motor)

 Remember to click on Download Entry for the changes to take effect.

This is a 2-line ECT entry, its equivalent script code:
I8016=$2F8C00 ; Unfiltered parallel pos of location Y:$78C00 –User Input

I8017=$12007 ; Width and Offset. Processed result at X:$3512 –User Input

Note

Record the processed data address (e.g. $3512). This is where the

commutation position address Ixx83 will be pointing to. Also, this

will be used in setting up the power-on phasing routine.

The commutation enable, and position address would then be:
I101=1 ; Mtr#1 Commutation enable, from X Register

I183=$3512 ; Mtr#1 Commutation Position Address –User Input

ACC-84E User Manual

Using the Resulting Position Information 81

Absolute Power-On Position Read (Technique 2)
With technique 2, the absolute power-on position can be read directly from the serial data registers. But,

proper scaling (5-bit right shift, in a PLC) is required to conform to the unshifted on-going position.

Example 1: Channel 1 driving a 37-bit (25-bit single turn, 12-bit multi-turn) rotary serial encoder:

I180=0 ; Absolute power-on read disabled

I110=$78C00 ; Absolute power-on position address (ch1 serial data register A)

I195=$A50000 ; Parallel Read, 37 bits, Signed, from Y-Register –User Input

Bit 23: =1 Signed
 =0 Unsigned

1 0 1 0 0 1 0 1

Bit 22: =1 X-Register
 =0 Y-Register

Bits16-21: Number of Bits to read
(Resolution 37 bits or 100101)

Ixx95
Binary:

Hex($): A 5

0 0 0 0 0 0 0 0

0 0

0 0 0 0 0 0 0 0

0 0

Bits 0-15: reserved
(always 0)

In this mode, PMAC reads 37 bits from the consecutive serial data registers:

Serial Register A
(Ch1 Y:$78C00)

Serial Register B
(Ch1 Y:$78C01)

37 bits
02347

With the setting of Ixx80=0, the actual position is not reported automatically on power-up. It will be

reported after scaling (i.e. in PLC, below).

Example 2: Channel 1 driving a 25-bit (25-bit Single-turn, No Multi-turn) absolute rotary serial encoder,

or a similar protocol resolution (25 bits) linear scale:

I180=0 ; Absolute power-on read disabled

I110=$78B20 ; Absolute power-on position address (ch1 serial data register A)

I195=$190000 ; Parallel Read, 25 bits, Unsigned, from Y-Register –User Input

Bit 23: =1 Signed
 =0 Unsigned

0 0 0 1 1 0 0 1

Bit 22: =1 X-Register
 =0 Y-Register

Bits16-21: Number of Bits to read
(Resolution 25 bits or 011001)

Ixx95
Binary:

Hex($): 1 9

0 0 0 0 0 0 0 0

0 0

0 0 0 0 0 0 0 0

0 0

Bits 0-15: reserved
(always 0)

In this mode, PMAC reads 25 bits from the first serial data register:

Serial Data Register A
(Ch1 Y:$78C00)

Serial Data Register B
(Ch1 Y:$78C01)

25 bits
02347

With the setting of Ixx80=0, the actual position is not reported automatically on power-up. It will be

reported after scaling (i.e. in PLC, below).

ACC-84E User Manual

Using the Resulting Position Information 82

Note

With absolute serial encoders (no multi-turn data), the power-on

position format is set up for unsigned operation.

Note

The upper two fields in Ixx95 are the only relevant ones. Bits 0

through 15 are reserved and should always be set to 0.

Power-On Position scaling PLC example (for technique 2)
M162->D:$00008B ; #1 Actual position (Suggested M-Variable)

Open PLC 1 clear

I5111=100*8388608/I10 while(I5111>0) endw ; 100 msec delay

CMD“#1K“ ; Make sure motor(s) killed

I5111=100*8388608/I10 while(I5111>0) endw ; 100 msec delay

CMD“#1$*“ ; Read un-scaled absolute position

I5111=100*8388608/I10 while(I5111>0) endw ; 100 msec delay

M162=M162/32 ; Scale absolute position (shift right 5 bits)

I5111=100*8388608/I10 while(I5111>0) endw ; 100 msec delay

Dis PLC 1 ; Run once on power-up or reset

Close

Note

Some serial encoders use an external (not from the Brick) source for

power. Make sure that this power is applied prior to performing an

absolute read on power-up.

ACC-84E User Manual

Using the Resulting Position Information 83

Technique 3 Example

Channel 1 is driving a 32-bit (20-bit Single-turn, 12-bit Multi-turn) rotary serial encoder, or a linear scale

with similar protocol resolution (20 bits, 0.1 micron).

Encoder Conversion Table - for position (Technique 3)

 Conversion Type: Parallel position from Y word with no filtering

 Width in Bits: Single-turn/absolute resolution in bits (e.g. 20 bits)

 Offset Location of LSB: leave at zero

 Normal Shift (5 bits to the left)

 Source Address : serial data register A (see table below)

 Remember to click on Download Entry for the changes to take effect.

Turbo PAMC Base Address Channel

1 2 3 4

$78C00 Y:$78C00 Y:$78C04 Y:$78C08 Y:$78C0C

$79C00 Y:$79C00 Y:$79C04 Y:$79C08 Y:$79C0C

$7AC00 Y:$7AC00 Y:$7AC04 Y:$7AC08 Y:$7AC0C

$7BC00 Y:$7BC00 Y:$7BC04 Y:$7BC08 Y:$7BC0C

$78D00 Y:$78D00 Y:$78D04 Y:$78D08 Y:$78D0C

$79D00 Y:$79D00 Y:$79D04 Y:$79D08 Y:$79D0C

$7AD00 Y:$7AD00 Y:$7AD04 Y:$7AD08 Y:$7AD0C

$7BD00 Y:$7BD00 Y:$7BD04 Y:$7BD08 Y:$7BD0C

$78E00 Y:$78E00 Y:$78E04 Y:$78E08 Y:$78E0C

$79E00 Y:$79E00 Y:$79E04 Y:$79E08 Y:$79E0C

$7AE00 Y:$7AE00 Y:$7AE04 Y:$7AE08 Y:$7AE0C

$7BE00 Y:$7BE00 Y:$7BE04 Y:$7BE08 Y:$7BE0C

ACC-84E User Manual

Using the Resulting Position Information 84

This is a 2-line ECT entry, its equivalent script code:
I8000=$278C00 ; Unfiltered parallel pos of location Y:$78C00

I8001=$014000 ; Width and Offset. Processed result at $3502

Typically, the position and velocity pointers are set to the processed data address (e.g. $3502). With

Single-turn or linear resolutions less than 20 bits, the position/velocity scale factors, and position error

limit can be left at default values. But with resolutions of 20 bits or greater, it is recommended to set the

scale factors to 1 and the position error limit to its maximum value:
I100=1 ; Mtr#1 Active. Remember to activate the channel to see feedback

I103=$3502 ; Mtr#1 position loop feedback address

I104=$3502 ; Mtr#1 velocity loop feedback address

I108=1 ; Mtr#1 position-loop scale factor

I109=1 ; Mtr#1 velocity-loop scale factor

I167=8388607 ; Mtr#1 Position Error Limit

Note

At this point, you should be able to move the motor/encoder shaft by

hand and see ‘motor’ counts in the position window.

Counts Per User Units (Technique 3)
With technique 3, the user should expect to see 2ST counts per revolution for rotary encoders, and

1/Resolution counts per user unit for linear scales in the motor position window.

Examples: 32-bit rotary encoder (20-bit Singleturn): 220= 1,048,576 cts/rev

 0.1-micron linear scale: 1/0.0001= 10,000 cts/mm

ACC-84E User Manual

Using the Resulting Position Information 85

Encoder Conversion Table - for commutation (Technique 3)
Commutation with Turbo PMAC does not require high resolution data. With Technique 3, it is

recommended to fix it at 18 bits. This will also eliminate quantization noise.

Note

It is recommended to insert the commutation ECT entries after all of

the position ECT entries have been configured.

Assuming that eight encoders have been configured for position, the first ECT for commutation for the

first motor would be at entry number nine:

 Conversion Type: Parallel pos from Y word with no filtering

 Width in Bits: 18

 Offset Location of LSB = Singleturn/protocol bits – 18 (e.g. 20-18=2)

 No shifting

 Source Address: Serial data register A (same as position ECT for this motor)

 Remember to click on Download Entry for the changes to take effect.

ACC-84E User Manual

Using the Resulting Position Information 86

This is a 2-line ECT entry, its equivalent script code:
I8016=$2F8C00 ; Unfiltered parallel pos of location Y:$78C00 –User Input

I8017=$12002 ; Width and Offset. Processed result at X:$3512 –User Input

Note

Record the processed data address (e.g. $3512). This is where the

commutation position address Ixx83 will be pointing to. Also, this

will be used in setting up the power-on phasing routine.

The commutation enable, and position address would then be:
I101=1 ; Mtr#1 Commutation enable, from X Register

I183=$3512 ; Mtr#1 Commutation Position Address –User Input

ACC-84E User Manual

Using the Resulting Position Information 87

Absolute Power-On Position Read (Technique 3)
With Technique 3, the absolute power-on read can be performed using PMAC’s automatic settings

(Ixx80, Ixx10 and Ixx95).

Example 1: Channel 1 driving a 32-bit (20-bit single turn, 12-bit multi-turn) rotary serial encoder:

I180=2 ; Absolute power-on read enabled

I110=$78C00 ; Absolute power-on position address (ch1 serial data register A)

I195=$A00000 ; Parallel Read, 32 bits, Signed, from Y-Register –User Input

Bit 23: =1 Signed
 =0 Unsigned

1 0 1 0 0 0 0 0

Bit 22: =1 X-Register
 =0 Y-Register

Bits16-21: Number of Bits to read
(Resolution 32 bits or 100000)

Ixx95
Binary:

Hex($): A 0

0 0 0 0 0 0 0 0

0 0

0 0 0 0 0 0 0 0

0 0

Bits 0-15: reserved
(always 0)

In this mode, PMAC reads and reports 32 bits from the consecutive serial data registers:

Serial Data Register A
(Ch1 Y:$78C00)

Serial Data Register B
(Ch1 Y:$78C01)

32 bits
02347

With the setting of Ixx80=2, the actual position is reported automatically on Power-up. Otherwise, a #1$*

command is necessary to read and report the absolute position.

Example 2: Channel 1 driving a 20-bit (20-bit Single-turn, No Multi-turn) absolute rotary serial encoder,

or a similar protocol resolution (20 bits) linear scale:

I180=2 ; Absolute power-on read enabled

I110=$78C00 ; Absolute power-on position address (ch1 serial data register A)

I195=$140000 ; Parallel Read, 20 bits, Unsigned, from Y-Register –User Input

Bit 23: =1 Signed
 =0 Unsigned

0 0 0 1 0 1 0 0

Bit 22: =1 X-Register
 =0 Y-Register

Bits16-21: Number of Bits to read
(Resolution 20 bits or 010100)

Ixx95
Binary:

Hex($): 1 4

0 0 0 0 0 0 0 0

0 0

0 0 0 0 0 0 0 0

0 0

Bits 0-15: reserved
(always 0)

In this mode, PMAC reads and reports 20 bits from the first serial data register:

Serial Data Register A
(Ch1 Y:$78C00)

Serial Data Register B
(Ch1 Y:$78C01)

20 bits
02347

With the setting of Ixx80=2, the actual position is reported automatically on Power-up. Otherwise, a #1$*

command is necessary to read and report the absolute position.

ACC-84E User Manual

Using the Resulting Position Information 88

Note

With absolute serial encoders (no multi-turn data), the power-on

position format is set up for unsigned operation.

Note

The upper two fields in Ixx95 are the only relevant ones. Bits 0

through 15 are reserved and should always be set to 0.

Note

Some serial encoders use an external (not from the Brick) source for

power. Make sure that this power is applied prior to performing an

absolute read on power-up.

ACC-84E User Manual

Using the Resulting Position Information 89

Ongoing Commutation Phase Position
For the commutation algorithm’s ongoing phase position, Turbo PMAC reads the entire 24-bit register

specified by Ixx83 every phase cycle. In order to be able to handle rollover of this data properly, the most

significant bit (MSB) of this data must end up in bit 31 of the 32-bit result, shifted, in ECT, if necessary.

With most protocols, no shifting is necessary, but some will require a net “left shift” to achieve this result.

No Data Shifting
To use serial encoder position from an ACC-84E FPGA-based interface for ongoing phase position where

the data is properly left shifted or it is contiguous over 24-bit register.

Note

Position data from serial encoder protocols SSI, EnDat2.1/2.2,

Sigma II/III/V, BiSS-B/C and Mitsubishi protocols usually fit into

this method, unless the resolution per electrical cycle is greater than

16777215 (224 − 1) as discussed below, in which case data shifting

method should be used.

 Ixx83 is set based upon the following table:

Turbo PAMC Base

Address

Channel

1 2 3 4

$78C00 $78C00 $78C04 $78C08 $78C0C

$79C00 $79C00 $79C04 $79C08 $79C0C

$7AC00 $7AC00 $7AC04 $7AC08 $7AC0C

$7BC00 $7BC00 $7BC04 $7BC08 $7BC0C

$78D00 $78D00 $78D04 $78D08 $78D0C

$79D00 $79D00 $79D04 $79D08 $79D0C

$7AD00 $7AD00 $7AD04 $7AD08 $7AD0C

$7BD00 $7BD00 $7BD04 $7BD08 $7BD0C

$78E00 $78E00 $78E04 $78E08 $78E0C

$79E00 $79E00 $79E04 $79E08 $79E0C

$7AE00 $7AE00 $7AE04 $7AE08 $7AE0C

$7BE00 $7BE00 $7BE04 $7BE08 $7BE0C

The Ixx70 and Ixx71 determine the commutation cycle length for Turbo PMAC.

Note

It is important to notice that the Ixx71 has a range of 0 – 16777215

(224 − 1). In some cases where the encoder resolution is more than

24-bits per electrical cycle, user should use the shifted data method

discussed in the next section rather than using the data directly as

discussed here.

If number of counts (register LSB) per motor revolution is less than (224 − 1), Ixx70 and Ixx71 can be set

as shown below:

 Ixx01 = 3 // Turbo PMAC commutation, commutation feedback from Y-register

 Ixx70 = (Number of pole pairs for motor revolution)

 Ixx71 = (Register LSB per motor revolution)

ACC-84E User Manual

Using the Resulting Position Information 90

If number of counts (register LSB) per motor revolution is greater than (224 − 1) but the number of

counts (register LSB) per electrical cycle is:

a. An Integer

b. Less than (224 − 1)

Ixx70 and Ixx71 can be set as shown below:

 Ixx01 = 3 // Turbo PMAC commutation, commutation feedback from Y-register

 Ixx70 = 1

 Ixx71 = (Register LSBs per commutation cycle)

Data Shifting
In order for Turbo PMAC CPU to be able to handle rollover of on-going phase position data properly, the

most significant bit (MSB) of the position data must end up in bit 23 of the 24-bit result. In some cases

the data needs to be shifted in order to move the MSB of position data (single turn position data in most

cases) to bit 23 of the 24-resulting register.

Note

Position data from serial encoder protocols Tamagawa, Panasonic,

Mitutoyo, Matsushita usually fit into this method, in addition to

cases where the resolution per electrical cycle is greater than

16777215 (224 − 1) and data shifting method should be used.

Shifting-Up MSB of Real Data
In most cases (with Tamagawa, Panasonic, Mitutoyo, Matsushita protocols), the MSB of the real position

data is not at bit 23 of the 24-bit register, which is required for Turbo PMAC, in order for it to properly

handle the roll-over. In these cases, the data should be shifted in the Encoder Conversion Table (ECT)

and the result of ECT can be used at commutation feedback:

17 bits real data- - - - - - - - - - - -

(zeros)17 bit real data

0

0

161723

6723

7

ECT Data Shifting Example

In these cases a Y-memory Parallel Read method is used in Encoder Conversion Table. This entry is a

two line entry where the first entry defines the source of the data and shift in resulting data and the second

line determines the location of the real position data in the source register. The following table shows the

typical values for this ECT entry:

ACC-84E User Manual

Using the Resulting Position Information 91

1st line: Source register and result shift (no-shift):

ACC-84E

Base Address

Channel

1 2 3 4

$78C00 $2F8C00 $2F8C04 $2F8C08 $2F8C0C

$79C00 $2F9C00 $2F9C04 $2F9C08 $2F9C0C

$7AC00 $2FAC00 $2FAC04 $2FAC08 $2FAC0C

$7BC00 $2FBC00 $2FBC04 $2FBC08 $2FBC0C

$78D00 $2F8D00 $2F8D04 $2F8D08 $2F8D0C

$79D00 $2F9D00 $2F9D04 $2F9D08 $2F9D0C

$7AD00 $2FAD00 $2FAD04 $2FAD08 $2FAD0C

$7BD00 $2FBD00 $2FBD04 $2FBD08 $2FBD0C

$78E00 $2F8E00 $2F8E04 $2F8E08 $2F8E0C

$79E00 $2F9E00 $2F9E04 $2F9E08 $2F9E0C

$7AE00 $2FAE00 $2FAE04 $2FAE08 $2FAE0C

$7BE00 $2FBE00 $2FBE04 $2FBE08 $2FBE0C

2nd line: Real position data location:

The following values are encoder/protocol dependent and should be selected accordingly. The following

values are shown for most common encoder resolutions:

Feedback Resolution 2nd Line Setting

16-bit Single Rev, Starting at bit 0 $010000

17-bit Single Rev, Starting at bit 0 $011000

20-bit Single Rev, Starting at bit 0 $014000

17-bit Single Rev, Starting at bit 4 $011004

26-bit Single Rev, Starting at bit 0 $018002

32-bit Single Rev, Starting at bit 0 $018008

$7AD00 $2FAD00

$7BD00 $2FBD00

$78E00 $2F8E00

$79E00 $2F9E00

$7AE00 $2FAE00

$7BE00 $2FBE00

ACC-84E User Manual

Using the Resulting Position Information 92

Power-On Commutation Phase Position
Because most serial encoders provide absolute position information, especially over one motor revolution,

they are commonly used to provide the absolute rotor-angle position at power-up for the commutation

algorithms. Doing this requires assigning proper values to several saved setup elements.

This section gives an overview of those settings; details can be found in the element descriptions in the

Software Reference Manual, the Setting Up Commutation chapter of the User’s Manual, and the

Hardware Reference Manual for the interface. In addition the motor setup routines in the IDE software

will walk you through this setup.

To use serial encoder position from an ACC-84E FPGA-based interface for absolute power-on phase

position, the following saved setup elements must be specified:

 Motor[x].pAbsPhasePos = Acc84E[i].Chan[j].SerialEncDataA.a

 Motor[x].AbsPhasePosFormat = $aabbccdd // Protocol-specific settings

 Motor[x].AbsPhasePosSf = 2048 / (LSBs per commutation cycle)

 Motor[x].AbsPhasePosOffset = (Difference between sensor zero and commutation zero)

For the format variable, the LSB of the encoder data is typically found in bit 8 of the 32-bit register, and

only enough bits to cover a single commutation cycle need to be used. (However, it does not hurt to

specify more bits than are required.) It is seldom required to use data from the next register.

ACC-84E User Manual

Using the Resulting Position Information 93

Ongoing Servo Position
To use the serial encoder position for ongoing servo position, the data must first be processed in the

encoder conversion table. This is done with a “Type 1” single-register-read conversion from

SerialEncDataA. In order to be able to handle rollover of this data properly, the most significant bit

(MSB) of this data must end up in bit 31 of the 32-bit result, shifted if necessary. With most protocols, no

shifting is necessary, but some will require a net “left shift” to achieve this result.

To use serial encoder position from an ACC-84E FPGA-based interface for ongoing servo position, the

following saved setup elements must be specified:
 EncTable[n].Type = 1

 EncTable[n].pEnc = Acc84E[i].Chan[j].SerialEncDataA.a

 EncTable[n].index1 = (32 - # of bits) // Shift left # of bits

 EncTable[n].index2 = 8 // Shift right # of bits

 EncTable[n].ScaleFactor = 1/ (232 - # of bits) // For result in encoder LSBs

 Motor[x].pEnc = EncTable[n].a // Use table result for position-loop feedback

 Motor[x].pEnc2 = EncTable[n].a // Use table result for velocity-loop feedback

ACC-84E User Manual

Using the Resulting Position Information 94

Power-On Servo Position
Many serial encoders can provide absolute position over the entire range of travel of the motor. If so,

Power PMAC can execute an absolute power-on read of the encoder to establish the reference position,

eliminating the need for a homing search move.

This section gives an overview of those settings; details can be found in the element descriptions in the

Software Reference Manual, the Basic Motor Setup chapter of the User’s Manual, and the Hardware

Reference Manual for the interface. In addition the motor setup routines in the IDE software will walk

you through this setup.

To use serial encoder position from an ACC-84E FPGA-based interface for absolute power-on phase

position, the following saved setup elements must be specified:
 Motor[x].pAbsPos = Acc84E[i].Chan[j].SerialEncDataA.a

 Motor[x].AbsPosFormat = $aabbccdd // Protocol-specific settings

 Motor[x].AbsPosSf = (Motor units per sensor LSB)

 Motor[x].AbsPosOffset = (Difference between sensor zero and motor zero)

For the format variable, the LSB of the encoder data is typically found in bit 8 of the 32-bit

SerialEncDataA register. If the encoder provides more than 24 bits of absolute position data, the format

element permits data from SerialEncDataB to be used as well. Note, however, that the data in

SerialEncDataA must go all the way to bit 31 for this to work. In protocols such as Tamagawa and

Panasonic, which provide only 17 bits of data in SerialEncDataA and more in SerialEncDataB, the full

absolute position must be assembled in a user algorithm.

ACC-84E User Manual

Using the Resulting Position Information 95

Using the ACC-84E with MACRO

The ACC-84E can be used with MACRO8 and MACRO16 CPU in a MACRO UMAC rack to take

advantage of serial encoders over a MACRO ring. The principal behind using the ACC-84E will be

similar to what is available on Turbo PMAC2 UMAC CPU. However, there are some differences which

will be discussed in this section.

Addressing and Register Addresses

ACC-84E will be address as an IO card on MACRO8 and MACRO16 CPUs. So the following addresses

will be used:

Chip Select 3U MACRO CPU

Adderss

Dip Switch SW1 Position

1 2 3 4

CS10 Y:$8800 Close Close Close Close

Y:$9800 Close Close Open Close

Y:$A800 Close Close Close Open

Y:$B800 ($FFE0*) Close Close Open Open

CS12 Y:$8840 Open Close Close Close

Y:$9840 Open Close Open Close

Y:$A840 Open Close Close Open

Y:$B840 ($FFE8*) Open Close Open Open

CS14 Y:$88C0 Close Open Close Close

Y:$98C0 Close Open Open Close

Y:$A8C0 Close Open Close Open

Y:$B8C0 ($FFF0*) Close Open Open Open

Based upon the base address selection, the address for each of the global registers and channel specific

registers will change:

MACRO

UMAC Base

address

Global Setup

Register

Address

1st Channel

Setup

Register

Address

2nd Channel

Setup

Register

Address

3rd Channel

Setup

Register

Address

4th Channel

Setup

Register

Address

$8800 X:$880F X:$8800 X:$8804 X:$8808 X:$880C

$9800 X:$980F X:$9800 X:$9804 X:$9808 X:$980C

$A800 X:$A80F X:$A800 X:$A804 X:$A808 X:$A80C

$B800 X:$B80F X:$B800 X:$B804 X:$B808 X:$B80C

$8840 X:$884F X:$8840 X:$8844 X:$8848 X:$884C

$9840 X:$894F X:$8940 X:$8944 X:$8948 X:$894C

$A840 X:$A84F X:$A840 X:$A844 X:$A848 X:$A84C

$B840 X:$B84F X:$B840 X:$B844 X:$B848 X:$B84C

$88C0 X:$88CF X:$88C0 X:$88C4 X:$88C8 X:$88CC

$98C0 X:$98CF X:$98C0 X:$98C4 X:$98C8 X:$98CC

$A8C0 X:$A8CF X:$A8C0 X:$A8C4 X:$A8C8 X:$A8CC

$B8C0 X:$B8CF X:$B8C0 X:$B8C4 X:$B8C8 X:$B8CC

Each of the global and channel specific setup elements are set up exactly based upon the explanation in

Turbo UMAC CPU section depending on the serial protocol in question.

ACC-84E User Manual

Using the Resulting Position Information 96

Setting up the Global and Channel Registers on Power Up

As mentioned in the Turbo UMAC CPU section, for each of the protocol, certain setup words needs to be

written to global and channel specific registers of ACC-84E. Since the ACC-84E is in the MACRO Rack

and is not directly accessible to Turbo PMAC or Ultralite, the settings need to be sent through the

MACRO node and MACRO communication. For this matter, use of MI198 and MI199 are recommended

since this eliminates a need for defining MM variables on MACRO station. Here is an example of setting

up an ACC-84E for BiSS-C protocol on a MACRO16 CPU. This PLC resides on Ultralite and, on power-

up or execution of the PLC, sets up the global and channel specific registers for ACC-84E.

#define timer i5111

#define msec *8388607/i10while(i5111>0)endwhile

close

del gat

open plc 1 clear

cmd"clrf"

timer = 100 msec

cmd"msclrf15"

timer = 100 msec

cmd"ms0,mi198=$E8880F" // pointing MI199 to Global Register at X:$880F

timer = 100 msec // $E8 X Unsigned 24 bit, $78 Y Unsiged 24 bit

cmd"ms0,mi199=$63000B" // Writing the value to Global Register

timer = 100 msec

cmd"ms0,mi198=$E88800" // Pointing MI199 to Channel Specific register X:$8800

timer = 100 msec

cmd"ms0,mi199=$2114A0" // Writing the value to Channel Specific register

timer = 100 msec

disable plc 1

close

Encoder Conversion Table Setup

In order to get the serial data passed through the MACRO interface, two different encoder conversion

tables need to be set: MACRO ECT and Ultralite ECT.

The Encoder Conversion Table entry for MACRO CPU uses type $2 to read parallel data from Y-word

where in most protocols position data, or at least lower bits of the data, is available. The second setting is

to use the result of the ECT and send it over the MACRO to Ultralite.
ms0,mi120=$288800 // Method $2 parallel y-word read, Result at $10

 // bit 19 set to 1 for no shifting of data

 // $8800 channel base address

ms0,mi121=$FFFFFF // Bits-Used Mask, All bits are used, Result at $11

ms0,mi101=$11 // node 0, sends result of 1st ECT entry as position

Once this data is available on the MACRO node, normal 24-bit Y-word parallel read will be used for

reading of corresponding MACRO node, register 0 for on-going position of the axis. It is the user’s

choice whether or not to shift the data.
I8000=$2F8420 // Y-word parallel read from $78420, Node 0, Register 0, No-shift

I8001=$018000 // 24-bit wide read, starting at bit 0

Once the position data is available on the Ultralite side, position and velocity feedback pointers can be

defined for the motors in question.
I103=$3502 // position feedback

I104=$3502 // velocity feedback

ACC-84E User Manual

Using the Resulting Position Information 97

Absolute Power-On Phasing and Servo Power on Position

In order to read the absolute position over MACRO, the Power-Up Position Source Address

(MS{anynode},MI111-MI118) variable needs to be set. This will allow the MACRO16 CPU to transfer

the data whenever the MS{node},MI920 is queried. As for most of the protocols supported by ACC-84E,

the position and status bits are read through the Channel Registers A and B, a Double-Y-Word parallel

read should support most of the cases. The only question will be number of bits which need to be read,

and that is dependent on serial encoder specifications.
ms0,mi111=$208800 //setup for power on position on node 0

 //$1A is position data length $1A:26-bits $20:32-bits $12:18-bits

 //8800 channel base address

Once MI111-MI118 are setup, reading MS{node},MI920 will return the position as a 48-bit value which

can be assigned properly into motor actual position or can be used for establishing the phase reference of

the motor. For examples, please refer to examples discussed in the Turbo UMAC setup section of this

manual.

Commutating Over MACRO with High Resolution Encoders

It is possible to commutate motors with high resolution encoders over the MACRO ring. However, if the

position resolution of encoder is more than 24-bits per revolution, certain measures should be taken since

the automatic transfer of lower 24 bits of position data might not provide sufficient position information

required for commutation and introduce considerable velocity limitations on motor control.

If the encoder on commutated motor has less than 24-bits of resolution per single revolution (at most

16,777,215 counts per electrical cycle), then the data available in register 0 of the node can be used for

commutation purpose and the following setting are sufficient. Here is an example of commutation if the

motor was on node 0.
I101=3 // motor is commutated, commutation data is on Y-memory location

I183=$78420 // Node 0, Register 0

I170=2 // 2-pole pair motor

I171=262144 // 18-bits of resolution per revolution of the motor

If the encoder has 24-bits or more resolution per electrical cycle, then the upper portion of the data

becomes important for commutation purpose. Since the commutation algorithm in PMAC uses a 2048

state Sine table, only the upper 12-bits of data per electrical cycle will be important for PMAC. Since the

ECT entry only reads the lower 24-bits of position data, in order to transfer the upper 24-bits of data

(most significant bits), a separate node should be used. For this purpose, it is suggested that a MACRO

PLC on the MACRO16 CPU be implemented. This PLC will copy the upper 24-bits of data from each of

the channels and copies them to register 0 of corresponding IO nodes of SERVO nodes. This MACRO

PLC should be downloaded to MACRO16 CPU through PERIN32PRO2 software and while in

MACROASCII communication mode.
// Generic Definition

CLOSE

#define Chan1RegA MM100

#define Chan1RegB MM101

#define Chan2RegA MM102

#define Chan2RegB MM103

#define Chan3RegA MM104

#define Chan3RegB MM105

#define Chan4RegA MM106

#define Chan4RegB MM107

#define Node2Reg0 MM108

#define Node3Reg0 MM109

#define Node6Reg0 MM110

#define Node7Reg0 MM111

Chan1RegA->Y:$8800,0,24

ACC-84E User Manual

Using the Resulting Position Information 98

Chan1RegB->Y:$8801,0,24

Chan2RegA->Y:$8804,0,24

Chan2RegB->Y:$8805,0,24

Chan3RegA->Y:$8808,0,24

Chan3RegB->Y:$8809,0,24

Chan4RegA->Y:$880C,0,24

Chan4RegB->Y:$880D,0,24

Node2Reg0->X:$C0A0,0,24

Node3Reg0->X:$C0A4,0,24

Node6Reg0->X:$C0A8,0,24

Node7Reg0->X:$C0AC,0,24

// 26-bit Encoder

OPEN MACPLCC

Node2Reg0=(Chan1RegB & $000003)*$100000 + Chan1RegA/$8

Node3Reg0=(Chan2RegB & $000003)*$100000 + Chan2RegA/$8

Node6Reg0=(Chan3RegB & $000003)*$100000 + Chan3RegA/$8

Node7Reg0=(Chan4RegB & $000003)*$100000 + Chan4RegA/$8

CLOSE

// 32-bit Encoder

OPEN MACPLCC

Node2Reg0=(Chan1RegB & $0000FF)*$8000 + Chan1RegA/$200

Node3Reg0=(Chan2RegB & $0000FF)*$8000 + Chan2RegA/$200

Node6Reg0=(Chan3RegB & $0000FF)*$8000 + Chan3RegA/$200

Node7Reg0=(Chan4RegB & $0000FF)*$8000 + Chan4RegA/$200

CLOSE

These MACRO PLCs will copy the upper 23-bits of position data from ACC-84E position registers into

Register 0 of MACRO nodes 2, 3, 6 and 7. On the Ultralite side, the commutation parameters need to be

set up accordingly:
I101=1 // motor is commutated, commutation data is on X-memory location

I183=$78420 // Node 2, Register 0, X-memory location

I170=2 // 2-pole pair motor, motor dependent

I171=8388608 // 23-bits of resolution per revolution of the motor

ACC-84E User Manual

Appendix A: Setup Examples 99

APPENDIX A: SETUP EXAMPLES
This section is divided into several sections explaining different serial protocols and their settings. All the

examples given is based upon the first addressed channel on ACC-84E which is the factory default

address. User should change these addresses in each example to match their address settings.

ACC-84E User Manual

Appendix A: Setup Examples 100

SSI Feedback Setup Example

The following example demonstrates how to setup a 32-bit binary SSI encoder for position control of a

brushless motor on the first channel of a ACC-84E. Assume that the documentation for the encoder

suggests 1MHz clock for the length of the cable that we have in the system:

Multi-Channel Setup Element

X:$78C0F

01234567891011121314151617181920212223

M Divisor N Divisor Reserved
Trigger

Clock

Trigger

Edge
Trigger Delay Protocol Code

010000001000000011000110

201036

WX:$78B2F,$630102 ; 1MHz, Phase Clock, Falling Edge, no Delay

Single-Channel Setup Element

Channel #1 setup example, 32-bit SSI Binary Encoder

Channel 1:X:$78B20

01234567891011121314151617181920212223

Reserved Parity Type
Trigger

Mode

Trigger

Enable
Reserved Position Bits

Gray

Code to

Binary

RxData

Ready/

SENC

000001000010100011000110

024100

WX:$78C00,$001420 ; 32-bit SSI encoder, Binary

I8000=$278B20 ; Unfiltered parallel position of location

 ; Y:$78C00, normal 5-bit shifting

I8001=$18000 ; 24-bit processed result at $3502

I103=$3502 ; position loop feedback address

I104=$3502 ; velocity loop feedback address

As you may have noticed, the encoder conversion table only reads the lower 24 bits of data. This is

acceptable since the data is incremental. Please note that since the data is being read by the encoder

conversion table, as long as ECT has 2 reads in each 24-bit transition, it can handle the roll-over

gracefully and motor position will be updated correctly.

Brushless Motor with SSI Feedback - Setup Notes

The following settings are only general guidelines for parameters which user needs to set for a generic

brushless motor. These setting very well may be deferent on each system depending on the amplifier and

motor selection.

ACC-84E User Manual

Appendix A: Setup Examples 101

I100= 1 ; Motor activated

I101= 1 ; Commutation Enable

I103= $3502 ; position feedback address

I104= $3502 ; velocity feedback address

I172= 1365 ; Commutation Phase Angle, amplifier dependent

I184= $FFF000 ; Current-Loop Feedback Mask Word, amplifier dependent

I166= 7636 ; PWM Scale Factor, normally 15% above PWM clock

I102= $78202 ; Command Output Register. First channel of first ACC-24E2

I182= $78206 ; Current Loop Feedback Address. First channel of first ACC-24E2

I183= $3502 ; Commutation Position Address, from resolver ECT result.

 ; Same as position address of motor if the same encode is used

I124= $20001 ; Flag control. Over-travel-limits are disabled

Check motor manufacturer specifications and refer to the Turbo SRM.
I170= 1 ; Commutation Cycles per revolution (Number of pole pairs)

I171= 8192*32 ; Counts per revolution. Measured or provided by manufacturer

 ; shifted 5 bits (*32) because commutation address from ECT

These are Safety parameters, I2T protection. Check motor manufacturer specifications and refer to the

Turbo SRM.
I157= 8025 ; Motor#1 Continuous Current Limit

I158= 2167 ; Motor#1 Integrated Current Limit

I169= 24077 ; Motor#1 Output Command Limit

Please note that since the ECT table data is being used for commutation, it is better to have the Servo

clock set to the same frequency as the Phase clock so the data is available for commutation routines.

If you have your Ixx03 and Ixx04 set up properly to point to the correct ECT entry, you should be able to

observe position feedback in the position window when moving the motor by hand.

Using the PMACTuningPro2, you should be able to tune for the Current-Loop gains:
I161= 0.05 ; Motor#1 Current-Loop Integral gain

I162= 0.01 ; Motor#1 Current-Loop Forward-path proportional gain

I176= 0.5 ; Motor#1 Current-Loop Back-path proportional gain

Motor Phasing. We suggest using the stepper method for rough phasing:
I180= 6 ; Motor#1 Power-up mode

I173= 1200 ; Motor#1 Phase finding output Value

I174= 60 ; Motor#1 Phase finding time

Issue a #1$ from the online command window to phase motor. Completion of phasing routine can be

confirmed by checking the motor status window accessible through View menu in PEWIN32PRO2

software.

 Open Loop Test:

1. Issue a #1hmz to zero the position counter in the position window.

2. Issue a #1o1 from the online command window. This will send a 1% command output and

should move the motor slightly.

3. Issue a K to kill motor. If motor has not moved increase the open loop command output by

increments of one until you see counts change in the position window.

4. Repeat steps 1 thru 3 now issuing a negative open loop command #1o-1

5. Positive counts/movement should correspond to a positive open loop command, and negative

movement should correspond to negative commands.

6. If step 5 is a true statement, then skip to PID tuning. Otherwise, the encoder counting direction

doesn’t match the commutation direction. In this case, we can either setup the SSI encoder to

send the position in the opposite direction, or we can set the Ixx70 to the negative value of what

we have setup at the moment.

ACC-84E User Manual

Appendix A: Setup Examples 102

7. Repeat Open Loop test (steps 1 thru 4) to make sure the commutation is correct.

8. PID tuning: Use PMACTuningPro2 Automatic or Interactive to find the best position-loop gains

for your system.

Absolute phase and power-up/reset position
Absolute Servo Power-On Position Address and Format: Ixx10, Ixx95

To read an SSI encoder for absolute servo position, Ixx10 is set to the address of that channel’s position

register. Ixx95 is set according to the specification of the SSI encoder (how many bits, signed or unsigned

value…etc). The motor offset variable Ixx26 contains the difference between the absolute position and

the resulting motor position (if any).
I110= $78C00 ; Absolute Servo power-on position address

I195= $A00000 ; Signed, 32 bits

Absolute Phase Power-On Position Address and Format: Ixx81, Ixx91

To read an R/D converter for absolute phase position, Ixx81 is set to the address of that channel’s position

register. Ixx91 is set according to the specification of the SSI encoder. Please note that this is only

possible if the number of counts in one electrical cycle is less than 224.
I181= $78C00 ; Commutation position address

I191= $180000 ; 24 bits

Motor Phase Offset: Ixx75

Ixx75 holds the distance between the zero position of an absolute encoder used for power-on phase

position (specified by Ixx81 and Ixx91) and the zero position of Turbo PMAC's commutation cycle. The

proper value for this parameter can be found following the procedure explained in Turbo User Manual.

ACC-84E User Manual

Appendix A: Setup Examples 103

EnDat 2.2 Feedback Setup Example:

The following example demonstrates how to setup a 37-bit binary EnDat 2.2 encoder for position control

of a brushless motor on the first channel of an Acc-84E. Assume that the documentation for the encoder

suggests 1MHz clock for the length of the cable that we have in the system:

Channel is reading a 37 bit EnDat2.2 Encoder. Note that the full 37-bit encoder data is used for absolute

power-on position but the commutation/on-going position is limited to 24 bits by the Encoder Conversion

Table (ECT).

X:$78C0F

01234567891011121314151617181920212223

M Divisor N Divisor Reserved
Trigger

Clock

Trigger

Edge
Trigger Delay Protocol Code

110000000000010000000000

300200

WX:$78C0F,$002003 ; Global Control register, 1 MHz Clock setting

Channel 1:X:$78C00

01234567891011121314151617181920212223

000001000010100011100000

524170

Reserved Reserved
Trigger

Mode

Trigger

Enable
Reserved Position BitsReseved

RxData

Ready/

SENC
Command Code

WX:$78C00,$071425 ; Ch1 Control register, 37-Bit EnDat Encoder

Encoder conversion table setup required for EnDat 2.2 encoder connected to the first channel on Acc-84E

at base address set to $78C00 will be as follows:
I8000=$278C00 ; Unfiltered parallel position of location

 ; Y:$78C00, no shifting

I8001=$18000 ; 24-bit processed result at $3502

I103=$3502 ; position loop feedback address

I104=$3502 ; velocity loop feedback address

Since the number of counts in EnDat 2.2 encoders usually are much higher than normal incremental

encoders, the default settings for position and velocity feedback scale factors (a value of 96) can cause

resolution restrictions on Servo gain settings. It is recommended that the scale factors be set to a smaller

value.
I108=1 ; Motor1 position scale factor required not to saturate the Velocity

I109=1 ; Motor1 velocity-loop scale factor

Assigning values to the control registers should be performed upon power-up/reset in the initialization

PLC.
Open plc 1 Clear

Disable plc 2..31

cmd"wx:$78C0F,$002003" ; Global Control register, 1 MHz Clock setting

cmd"wx:$78C00,$071425" ; Channel 1, read 37 bits

Disable plc 1

Enable plc 2..31

ACC-84E User Manual

Appendix A: Setup Examples 104

Close

Absolute phase and power-up/reset position

Knowing the difference between the absolute encoder position and the commutation cycle zero (stored in

Ixx75 in PMAC), a phasing routine is no longer necessary on power-up/reset. The following procedure to

find Ixx75 is done only once per channel while setting up the machine for the first time, assuming the

mechanics and electronics are not to be changed and have not failed, been replaced or repaired:

 Set Ixx79=500 and Ixx29=-500

Increase these values by increments of 100 until motor movement is observed when O0 is issued. range is

100 to Ixx69.

Issue a #nO0, wait for motor to stop moving

Set Ixx29=0, wait for motor to stop moving

Set Mxx71 to zero (see suggested M-variables)

Read position data directly from channel position register.

For the Ch1 37-bit EnDat2.2 example, we need to construct the 37-bit position data from 24 bits at

Y:$78C00 [23:0] and 13 bits at Y:$78C01[12:0].

See plc example below.

Set Ixx75 to that value

Set Ixx79=0

Issue a #nK to kill the motor

Assuming that I175=3000 and knowing that we have 16777215 counts per electrical cycle, this PLC

example shows how to construct the 37-bit position word
#define EnDat_pos_low M1000

#define EnDat_pos_high M1001

EnDat_pos_low->Y:$78C00,0,24,U ; First 24 bits data, register A

EnDat_pos_high->Y:$78C01,0,16,U ; Rest of data, lower13 bits register B

#define Phase_Offset 3000

#define msec *8388608/I10While(I5111>0)Endw

Open plc 2 clear

I5111=1000 msec ; 1 sec delay

P1000= EnDat_pos_high&$1FFF ; Low 13 bits. Mask register B

If (P1000<$1000) ; Positive encoder data?

 M162= (P1000*$1000000+ EnDat_pos_low)*I108 ; Actual position

Else ; Negative encoder data?

 P1001= EnDat_pos_low ^$FFFFFF ; XOR 24 bits

 P1002=P1000^$1FFF ; XOR 13 bits

 M162=-(P1002*$1000000+P1001+1)*I108 ; Actual position

 M148=0 ; Clear phasing search error

Endif

M171= (M162+ Phase_Offset)%(I171/I170) ; Phase position

Disable plc 2

Close

EnDat 2.2 with Incremental Encoders:

In principal, incremental encoders transmit relative position values. After the encoder is powered up, the

position value is 0 and a subdivided position value resulting from the interpolation of the current signal is

transmitted.

Whereas relative position values can be transmitted immediately after switch-on, in order to receive

absolute position values you must traverse a reference mark (RM), or two reference marks in sequence for

encoders with distance-coded reference marks. This traversing is recorder in RM status bit.

The information containing:

 Reference run finished, i.e. absolute position value available and

 Position value 2

ACC-84E User Manual

Appendix A: Setup Examples 105

Can be requested with the “Encoder to send position values with additional information” command code.

Then RM status bit in the transmission protocol indicates whether reference run has finished. If this is the

case, position value 2 is available. Until this time, a relative position value is transmitted when position

value 2 is requested.

Reference
Mark

RM bit

0

P
o

si
ti

o
n

 V
al

u
e

1

Power On

Position Value From
DataA & DataB

Position Value 2 From
DataC

Position Capture

Reference
Offset

The figure is for incremental rotary encoder with one reference mark, and position value 2 will be the

absolute position relative to the reference mark in one revolution after reaching the first reference mark.

Position value 2 is captured after reaching the first reference mark and written to the actual motor position

register. By setting reference offset as current encoder position, reference mark position will become 0

count position.

Position value 2 can be obtained by sending proper command codes. The structure of position value 2 is

as below.

Position Value 2, 48-bit

Position Value 2 High Word 3 Position Value 2 Word 2 Position Value 2 Word 1

SerialEncoderDataC [15:0] SerialEncoderDataC [15:0] SerialEncoderDataC [15:0]

Command code $44 Command code $43 Command code $42

To obtain position value 2, three command codes need to be sent in sequence and data needs to be read in

sequence. For each command, the data will be sent back in lower two bytes of Serial Encoder Data

Register C as additional information 1 (byte1) and (byte2).

ACC-84E User Manual

Appendix A: Setup Examples 106

EnDat 2.2 Reference Mark Setup Example:

In this example, a Heidenhain ROD 486 encoder with 1024 lines is connected to a EIB 192 with 16384

subdivisions with EnDat 2.2. The feedback from EIB 192 to ACC84E is as a 24-bit encoder

(1024*16384=2^24). ACC-84E is at base address $78C00. The goal is to establish 0 count position after

reaching the first reference mark, and users need to either manually rotate the motor shaft or jog the motor

after enabling the following PLC.

Encoder conversion table setting for Motor #1:

I8000=$278C00 ; Unfiltered parallel position of location

 ; Y:$78C00, no shifting

I8001=$18000 ; 24-bit processed result at $3502

I103=$3502 ; Motor #1 position loop feedback address

I104=$3502 ; Motor #1 velocity loop feedback address

PLC Program:

//====== NOTES ABOUT THIS PLC EXAMPLE =====//

// This PLC example utilizes:

// M6000 through M6008, M160, M165, M1060

// Suggested M-Variable M114, M162

// P2000 through P2009

// Coordinate system 16 Timer 2

// Make sure that current and/or future configurations do not create conflicts with

// these parameters.

//===//

M6000..6010->* ; Self-referenced M-Variables

M6000..6010=0 ; Reset at download

//====== GLOBAL CONTROL REGISTERS =========//

#define EnDatGlobalCtrl1_4 M6000 ; Channels 1-4 EnDat global control register

EnDatGlobalCtrl1_4->X:$78C0F,0,24,U ; Channels 1-4 EnDat global control register

//====== CHANNEL CONTROL REGISTERS ========//

#define Ch1EnDatCtrl M6001 ; Channel 1 EnDat control register

Ch1EnDatCtrl->X:$78C00,0,24,U ; Channel 1 EnDat control register

//====== Define Data Registers ============//

#define SerialEncDataA M6002 ; Ch#1 Position 1 Data A

#define SerialEncDataB M6003 ; Ch#1 Position 1 Data B

#define SerialEncDataC M6004 ; Ch#1 Position 2 Data C

#define SerialEncDataD M6005 ; Ch#1 Position 2 Data D

#define SerialEncDataC_AddInfo M6006 ; Ch#1 Position 2 Data C Additional Info.

#define RM_bit M6007 ; Ch#1 Position 2 Data C RM bit

#define MRS_code M6008 ; Ch#1 Position 2 Data C Ack. of MRS_code

#define Mtr1AmpEna M114 ; Motor#1 Amp Enable bit

#define Mtr1ActPos M162 ; Motor#1 Actual Position

#define Mtr1DesVel M165 ; Motor#1 Desired Velocity

#define Mtr1ActVel M166 ; Motor#1 Actual Velocity

#define Mtr1DesVel_unit M160 ; Motor#1 Desired Velocity unit

#define Mtr1DesVel_fraction M1060 ; Motor#1 Desired Velocity fraction

#define Pos1_Value P2000 ; Position 1 Value

#define Pos2_Low P2001 ; Position 2 Value Word 1

#define Pos2_Mid P2002 ; Position 2 Value Word 2

#define Pos2_High P2003 ; Position 2 Value Word 3

#define Pos2_Value P2004 ; Position 2 Value

#define Index_Offset P2005 ; Reference Mark Offset

#define SerialEncDataA_Capt P2006 ; Position 1 Data A Capture Value

#define SerialEncDataB_Capt P2007 ; Position 1 Data B Capture Value

#define InitialEnaStatus P2008 ; Initial Motor Status: Enable/Disable

ACC-84E User Manual

Appendix A: Setup Examples 107

#define FaultFlag P2009 ; Data Receiving Timeout Flag

#define Timer I6612 ; Use Coord#32 Timer 2

#define msec *8388607/i10 While (I6612 > 0) EndWhile

//====== Address Assignment ======//

SerialEncDataA->Y:$78C00,0,24,U

SerialEncDataB->Y:$78C01,0,24,U

SerialEncDataC->Y:$78C02,0,24,U

SerialEncDataD->Y:$78C03,0,24,U

SerialEncDataC_AddInfo->Y:$78C02,0,16,U

RM_bit->Y:$78C02,22

MRS_code->Y:$78C02,16,4

Mtr1AmpEna->X:$078205,14 ; AENA1 output status

Mtr1ActPos->D:$00008B ; #1 Actual position (1/[Ixx08*32] cts)

Mtr1ActVel->X:$00009D,0,24,S ; #1 Actual velocity (1/[Ixx09*32]cts/ms)

Mtr1DesVel_unit->X:$000086,0,24,S ; #1 Desired cmd vel register, X-register

 ; units 3/[Ixx08*32] cts/msec at %100

Mtr1DesVel_fraction->Y:$000086,0,24,U ; #1 Desired cmd vel register (Fractional)

//====== PLC Program Start ======//

Open PLC 3 Clear

FaultFlag=0 ; Clear FaultFlag

EnDatGlobalCtrl1_4=$2003 ; 1MHz for Channel #1~4, cannot set higher

Ch1EnDatCtrl=$381418 ; 24-bit read, DataA[24], DataB[0], Position 1

Timer = 1 msec ; Wait for 1 msec

Ch1EnDatCtrl=$421418 ; Request Info in DataC, Pos 2 Word 1

Timer=1 msec ; Wait for 1 msec

While (RM_bit = 0)EndWhile ; Capture RM_bit, wait for RM_bit to be 1

If (Mtr1AmpEna = 1) ; Check initial motor status

 cmd"#1j/" ; If reaching RM by jogging, then jog stop

 InitialEnaStatus=1 ; Set Status as 1

Else

 cmd"#1k" ; If reaching RM by hand: kill; this is redundant

 InitialEnaStatus=0 ; Set Status as 0

EndIf

Mtr1DesVel = Mtr1DesVel_unit*3/(I108*32)+Mtr1DesVel_fraction/1677216 ; Desired Vel.

While (Mtr1DesVel > 10) ; Wait for motor to settle

 Mtr1DesVel = Mtr1DesVel_unit*3/(I108*32)+Mtr1DesVel_fraction/1677216

 ; Check Velocity while waiting

EndWhile

//================== Position 2 Data Value read ==================//

I6612 = 10 *8388607/I10 ; 10 msec delay for Data C

While (I6612 > 0 Or MRS_code != 2)EndWhile ; Timeout Or when MRS code is 2

If (MRS_code = 2) ; When MRS code is 2,

 Pos2_Low=SerialEncDataC_AddInfo ; Read Word 1 for Position 2

 SerialEncDataA_Capt=SerialEncDataA ; Read DataA for Position 1

 SerialEncDataB_Capt=SerialEncDataB&$00FFFF ; Read DataB for Position 1

Else

 FaultFlag=1 ; Timeout fault

EndIf

Ch1EnDatCtrl=$431418 ; Request Info in DataC, Pos 2 Word 2

I6612 = 10 *8388607/I10 ; 10 msec delay for Data C

While (I6612 > 0 Or MRS_code != 3)EndWhile ; Timeout Or when MRS code is 3

If (MRS_code = 3 And FaultFlag = 0) ; When MRS code is 3

 Pos2_Mid=SerialEncDataC_AddInfo ; Read Word 2 for Position 2

Else

 FaultFlag=1 ; Timeout fault

EndIf

Ch1EnDatCtrl=$441418 ; Request Info in DataC, Pos 2 Word 3

I6612 = 10 *8388607/I10 ; 10 msec delay for Data C

While (I6612 > 0 Or MRS_code != 4)Endwhile ; Timeout Or when MRS code is 4

ACC-84E User Manual

Appendix A: Setup Examples 108

If (MRS_code = 4 And FaultFlag = 0) ; When MRS code is 4

 Pos2_High=SerialEncDataC_AddInfo ; Read Word 3 for Position 2

Else

 FaultFlag=1 ; Timeout fault

EndIf

If (FaultFlag = 0) ; If reading is successful

 Pos2_Value = Pos2_Low + Pos2_Mid*$10000 + Pos2_High*$100000000

 ; Construct actual Position 2 value

 Timer = 10 msec ; Wait 10 msec

 Ch1EnDatCtrl=$381418 ; Change mode back to DataA reading

 If (InitialEnaStatus = 1) ; If initially enable

 cmd"#1k" ; Kill motor 1

 While (Mtr1ActVel > 10) EndWhile ; Wait for motor to settle

 Mtr1ActPos = Pos2_Value*(I108*32) ; Write offset to Motor#1 Act. Pos.

 Timer = 10 msec ; 10 msec delay

 cmd"#1j/" ; Closed-loop in position

 Else ; If initially motor is killed

 While (Mtr1ActVel > 10) EndWhile ; Wait for motor to settle

 Mtr1ActPos = Pos2_Value*(I108*32) ; Write offset to Motor#1 Act. Pos.

 EndIf

EndIf

Disable PLC 3

Close

Since the number of counts in EnDat 2.2 encoders usually are much higher than normal incremental

encoders, the default settings for position and velocity feedback scale factors (a value of 96) can cause

resolution restrictions on Servo gain settings. It is recommended that the scale factors be set to a smaller

value.
I108=1 ; Motor1 position scale factor required not to saturate the Velocity

I109=1 ; Motor1 velocity-loop scale factor

ACC-84E User Manual

Appendix A: Setup Examples 109

Yaskawa Sigma II/III/V Feedback Setup Example

Channel Control Register Setup for Position Read

In this mode the Brick will update the data registers based upon the data received from the encoder based

upon the trigger clock (servo or phase clock based upon the global register setting. Default is set to phase

clock).

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Command Code

R
e
s
e

rv
e

d

T
ri

g
g

e
r

M
o

d
e

T
ri

g
g

e
r

E
n

a
b

le

R
e
s
e

rv
e

d

R
x
D

a
ta

R
e
a

d
y
 /

S
E

N
C

_
M

o
d

e

R
e
s
e

re
v
e

d

R
e
s
e

t
M

o
d

e

Encoder Address

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 4 0 0

The setup value can be written to the memory as a part of your start up PLC.
// Yaskawa Feedback Startup Example PLC:

Open PLC 1 clear

Disable PLC2..31

CMD”WX:$78C00,$1400"

CMD”WX:$78C04,$1400"

CMD”WX:$78C08,$1400"

CMD”WX:$78C0C,$1400"

Disable plc1

Close

Channel Specific Control Register Setup for Reset Mode
Yaskawa absolute encoders can generate fault flags which are latched and the only way to reset them is

through this procedure. For a list of possible faults on Yaskawa absolute encoders and where to read

them, please check the following section titled “Alarm Codes.”

To send a RESET command to the encoder, the channel control register needs to be modified a few times.

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Command Code

R
e
s
e

rv
e

d

T
ri

g
g

e
r

M
o

d
e

T
ri

g
g

e
r

E
n

a
b

le

R
e
s
e

rv
e

d

R
x
D

a
ta

R
e
a

d
y
 /

S
E

N
C

_
M

o
d

e

R
e
s
e

re
v
e

d

R
e
s
e

t
M

o
d

e

Encoder Address

Reset Mode
0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 1

0 4 3 5 0 1

NOP
0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0

0 0 3 5 0 1

Position Read
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 4 0 0

Essentially, the following commands are available for any of the channels:
// Yaskawa RESET Commands for channel 1 of ACC-84E with base address of $78C00

CMD”WX:$78C00,$043501"

CMD”WX:$78C00,$003501"

CMD”WX:$78C00,$001400"

ACC-84E User Manual

Appendix A: Setup Examples 110

This can be done through any of the PLCs. However, there is some handshaking required in order to make

sure the RESET command is completed before the next command is sent down.

The following PLC shows an example on how to do a reset including the handshaking necessary with the

encoder to ensure a proper reset.
// Yaskawa Absolute Encoder RESET Example PLC:

#define Chn1CtrlReg M1011

Chn1CtrlReg->X:$78C00,0,24

#define Chn1Flags M1021

Chn1Flags->Y:$78C01,0,24

#define Chn1Alarms M1031

Chn1Alarms->Y:$78C02,8,8

Open PLC 10 clear

Chn1CtrlReg = $1400 ;Make sure the channel is in Position Read Mode

I6612 = 100 * 8388607/i10 ; 100 msec timer

While(I6612>0)

Endwhile

If ((Chn1Alarms & $3)= 0) ;If there is no Alarm, don't reset

 Disable PLC 10

Endif

p0=1

Chn1CtrlReg =$043501 ;Sending the RESET command on a single trigger

I6612 = 100 * 8388607/i10 ; 100 msec timer

While(I6612>0)

Endwhile

While ((Chn1CtrlReg & $1000) = 1) ;wait for the trigger to happen

Endwhile

While ((Chn1Flags & $100)=1) ;Busy Signal on bit 8 of second data register

 if ((Chn1Flags & $800000)=1) ; If timed out

 Chn1CtrlReg = $1400

 Disable PLC 10

 Endif

Endwhile

p0=2

Chn1CtrlReg = $003501 ;Sending the NOP command on a single trigger

I6612 = 100 * 8388607/i10 ; 100 msec timer

While(I6612>0)

Endwhile

While ((Chn1CtrlReg & $1000) = 1) ;wait for the trigger to happen

Endwhile

While ((Chn1Flags & $100)=1) ;Busy Signal on bit 8 of second data register

 if ((Chn1Flags & $800000)=1) ; If timed out

 Chn1CtrlReg = $1400

 Disable PLC 10

 Endif

Endwhile

p0=3

Chn1CtrlReg = $1400

Disable PLC 10

Close

Encoder Specific Settings

Yaskawa Sigma II & Sigma III protocol includes 5 feedback types with different resolutions and

incremental / absolute modes. All of these feedbacks are supported by ACC-84E.

16-Bit Yaskawa Sigma II Absolute Encoder:

Y:Base+$1 Y:Base+$0

S0S1S2S3S4S5S6S7S8S9S10S11S12S13S14S15M0M1M2M3M4M5M6M7M8M9M10M11M12M13M14M15

undeterminedAbsolute Single Turn Data (16-bits)Multi-turn Position (16-bits)0

4192023011

ACC-84E User Manual

Appendix A: Setup Examples 111

Encoder Conversion Table Setup for on-going servo position and commutation angle:

Channel ECT Line Settings

1st Channel 1st Line $200000 + Base Address + $0

2nd Line $020004

2nd Channel 1st Line $200000 + Base Address + $4

2nd Line $020004

3rd Channel 1st Line $200000 + Base Address + $8

2nd Line $020004

4th Channel 1st Line $200000 + Base Address + $C

2nd Line $020004

Example:

16-bit absolute encoder on channel 1 of ACC-84E with a base address of $78C00:
I8000=$278C00

I8001=$020004

Absolute Position Reading:
In order to read the absolute position from the encoder and set the motor position accordingly, the data

available in the EncoderDataRegisterA and EncoderDataRegisterB should be combined together. The

following example demonstrates required calculations. This PLC needs to be executed once after system

power-up/reset.
#define STD0_15 M1000

#define MTD0_3 M1001

#define MTD4_15 M1002

#define MTD0_15 M1003

STD0_15->Y:$78C00,4,16

MTD0_3->Y:$78C00,20,4

MTD4_15->Y:$78C01,0,12

MTD0_15->*

#define Mtr1ActPos M162

open plc 28 clear

MTD0_15 = MTD4_15 * $10 + MTD0_3

If (MTD0_15>$7FFF)

 MTD0_15 = (MTD0_15^$FFFF + 1)*-1

 If (STD0_15 !=0)

 STD0_15 = (STD0_15^$FFFF + 1)*-1

 Endif

Endif

Mtr1ActPos = ((MTD0_15 * $10000)+ STD0_15) * I108 * 32

disable plc 28

close

Reading Absolute Phase Position
For commutation purpose, since the data doesn’t start on bit 0 of the register, we have to use the output of

the encoder conversion table for on-going phase position instead of the position register itself.

Since the output value of the ECT is already shifted left by 5-bits, the value in the Ixx71 would be equal

to 65536 x 32 = 2097152. and Ixx70 would be equal to the number of pole pairs on the motor. Also,

Ixx83 should be pointing to the correct ECT entry to read the ongoing position data.

If the user wants to use the absolute feedback for power-on phasing with no motion, a similar approach

would be used however the single turn data would be sufficient for phasing the motor.

Here is an example of how to determine the power-on phasing based on absolute data. The following

procedure is only required once. After determining the phase reference value, a power-on PLC is

sufficient to establish the phase reference and motor will be ready for commutation.

ACC-84E User Manual

Appendix A: Setup Examples 112

1. Tune the current loop on the motor (after setting correct values for Ixx00, Ixx01, Ixx24, Ixx82,

Ixx84, Ixx57, Ixx58, Ixx69 and Ixx66, use the tuning software and tune the current loop i.e.

Ixx61, Ixx62 and Ixx76).

2. Set a positive value (usually 10% of Ixx66) to Ixx79 and set Ixx29=0 and Issue an O0 command

(open loop, zero output).

3. Read the single turn data (for the first channel, the data would be at Y:$78B20,4,16).

4. Set the Ixx79 back to its original value and issue a kill.

5. The following PLC will set up the phase reference.

#define Mtr1PhaseRef P184

 Mtr1PhaseRef = 5461 ; This value should work for all 16-bit absolute encoders

(Yaskawa aligns their U phase with index)

#define Mtr1PhasePos M171

 Mtr1PhasePos->X:$B4,24,S

#define Mtr1PhaseErr M148

 Mtr1PhaseErr->Y:$C0,8

#define Mtr1CommSize I171

 Mtr1CommSize = 65536

#define Mtr1CommCycles I170

 Mtr1CommCycles = 3

#define Mtr1Commutate I101

 Mtr1Commutate = 1 ;Pmac is commutating the motor, data is in the X

register

#define Mtr1CommFdbkAdr I183

 Mtr1CommFdbkAdr = $3502 ;Address is the second entry in the encoder conversion

table

#define Mtr1STD0_15 M180

 Mtr1STD0_15->Y:$78C00,4,16

Open plc 29 clear

;Mtr1 Set Phase Position

Mtr1PhasePos = (Mtr1STD0_15 % (Mtr1CommSize/Mtr1CommCycles) - Mtr1PhaseRef) * 32 *

Mtr1CommCycles

Mtr1PhaseErr = 0;

disable plc 29

ACC-84E User Manual

Appendix A: Setup Examples 113

17-Bit Yaskawa Sigma II Absolute Encoder:

Y:$78B21 Y:$78B20

S0S1S2S3S4S5S6S7S8S9S10S11S12S13S14S15M0M1M2M3M4M5M6M7M8M9M10M11M12M13M14M15

undeterminedAbsolute Single Turn Data (17-bits)Multi-turn Position (16-bits)0

4192023012

S16

Encoder Conversion Table Setup for on-going servo position and commutation:

Channel ECT Line Settings

1st Channel 1st Line $200000 + Base Address + $0

2nd Line $021004

2nd Channel 1st Line $200000 + Base Address + $4

2nd Line $021004

3rd Channel 1st Line $200000 + Base Address + $8

2nd Line $021004

4th Channel 1st Line $200000 + Base Address + $C

2nd Line $021004

Example:

17-bit absolute encoder on channel 1 of ACC-84E with a base address set to $78C00:
I8000=$278C00

I8001=$021004

Reading Absolute Position

In order to read the absolute position from the encoder and set the motor position accordingly, the data

available in the EncoderDataRegisterA and EncoderDataRegisterB should be combined. The

following example demonstrates required calculations. This PLC needs to be executed once after system

power-up/reset.
#define FirstWord M1000

#define SecondWord M1001

#define STD0_16 M1002

#define MTD0_15 M1003

FirstWord->Y:$78C00,0,24

SecondWord->Y:$78C01,0,4

STD0_16->*

MTD0_15->*

#define Mtr1ActPos M162

open plc 28 clear

MTD0_15 = (SecondWord & $1FFF) * $8 + int (Firstword / 2097152)

STD0_16 = int ((FirstWord & $1FFFF0) / 16)

If (MTD0_15>$7FFF)

 MTD0_15 = (MTD0_15^$FFFF + 1)*-1

 If (STD0_16 !=0)

 STD0_16 = (STD0_16^$1FFFF + 1)*-1

 Endif

Endif

Mtr1ActPos = ((MTD0_15 * $20000)+ STD0_16) * I108 * 32

disable plc 28

close

Reading Absolute Phase Position

For commutation purpose, since the data does not start on bit 0 of the register, we have to use the output

of the encoder conversion table for on-going phase position instead of the position register itself. This

means that the Servo Clock and the Phase Clock should be the same. Servo Cycle Extension Period

ACC-84E User Manual

Appendix A: Setup Examples 114

(Ixx60) can be used to lower the CPU load and not to face quantization errors on the PID loops if the high

Servo rates cause problems.

Since the output value of the ECT is already shifted left by 5-bits, the value in the Ixx71 would be equal

to 131072 x 32 = 2097152. and Ixx70 would be equal to the number of pole pairs on the motor. Also

Ixx83 should be pointing to the correct ECT entry to read the ongoing position data.

If the user wants to use the absolute feedback for power-on phasing with no motion, a similar approach

would be used. However, the single turn data would be sufficient for phasing the motor.

Here is an example of how to determine the power-on phasing based on absolute data. The following

procedure is only required once. After determining the phase reference value, a power-on PLC would be

sufficient to establish the phase reference and motor will be ready for commutation.

1. Tune the current loop on the motor (after setting correct values for Ixx00, Ixx01, Ixx24, Ixx82,

Ixx84, Ixx57, Ixx58, Ixx69 and Ixx66, use the tuning software and tune the current loop i.e.

Ixx61, Ixx62 and Ixx76).

2. Set a positive value (usually 10% of Ixx66) to Ixx79 and set Ixx29=0 and Issue an O0 command

(open loop, zero output).

3. Read the Single turn data. (for the first channel, the data would be at Y:$78B20,0,24 but you have

to apply the following function on it int ((FirstWord & $1FFFF0) / 16)).

4. Set the Ixx79 back to its original value and issue a kill.

5. The following PLC will set up the phase reference.

#define Mtr1PhaseRef P184

 Mtr1PhaseRef = 5461 ; This value should work for all 16-bit absolute encoders

(Yaskawa aligns their U phase with index)

#define Mtr1PhasePos M171

 Mtr1PhasePos->X:$B4,24,S

#define Mtr1PhaseErr M148

 Mtr1PhaseErr->Y:$C0,8

#define Mtr1CommSize I171

 Mtr1CommSize = 131072

#define Mtr1CommCycles I170

 Mtr1CommCycles = 3

#define Mtr1Commutate I101

 Mtr1Commutate = 1 ;Pmac is commutating the motor, data is in the X

register

#define Mtr1CommFdbkAdr I183

 Mtr1CommFdbkAdr = $3502 ;Address is the second entry in the encoder conversion

table

#define Mtr1STD0_15 M180

 Mtr1STD0_15->Y:$78C00,0,24

Open plc 29 clear

;Mtr1 Set Phase Position

Mtr1PhasePos = (int((Mtr1STD0_15&$1FFFF0)/$F) % (Mtr1CommSize/Mtr1CommCycles) -

Mtr1PhaseRef) * 32 * Mtr1CommCycles

Mtr1PhaseErr = 0;

disable plc 29

ACC-84E User Manual

Appendix A: Setup Examples 115

20-Bit Yaskawa Sigma III Absolute Encoder:

Y:$78B21 Y:$78B20

S0S1S2S3S4S5S6S7S8S9S10S11S12S13S14S15S17S18S19M0M1M2M3M4M5M6M7M8M9M10M11M12M13M14M15

undeterminedAbsolute Single Turn Data (17-bits)Multi-turn Position (16-bits)

423015

S16

Encoder Conversion Table Setup for on-going servo position and commutation:

Channel ECT Line Settings

1st Channel 1st Line $200000 + Base Address + $0

2nd Line $024004

2nd Channel 1st Line $200000 + Base Address + $4

2nd Line $024004

3rd Channel 1st Line $200000 + Base Address + $8

2nd Line $024004

4th Channel 1st Line $200000 + Base Address + $C

2nd Line $024004

Example:

20-bit absolute encoder on channel 1 of ACC-84E with a base address set to $78C00:
I8000=$278C00

I8001=$024004

Reading Absolute Position
In order to read the absolute position from the encoder and set the motor position accordingly, the data

available in the EncoderDataRegisterA and EncoderDataRegisterB should be combined. The

following example demonstrates required calculations. This PLC needs to be executed once after system

power-up/reset.
#define FirstWord M1000

#define SecondWord M1001

#define STD0_19 M1002

#define MTD0_15 M1003

FirstWord->Y:$78C00,0,24

SecondWord->Y:$78C01,0,4

STD0_19->*

MTD0_15->*

#define Mtr1ActPos M162

open plc 28 clear

MTD0_15 = (SecondWord & $FFFF)

STD0_19 = int ((FirstWord & $FFFFF0) / 16)

If (MTD0_15>$7FFF)

 MTD0_15 = (MTD0_15^$FFFF + 1)*-1

 If (STD0_19 !=0)

 STD0_19 = (STD0_19^$FFFFF + 1)*-1

 Endif

Endif

Mtr1ActPos = ((MTD0_15 * $100000)+ STD0_19) * I108 * 32

disable plc 28

close

ACC-84E User Manual

Appendix A: Setup Examples 116

Reading Absolute Phase Position
For commutation purpose, since the data does not start on bit 0 of the register, we have to use the output

of the encoder conversion table for on-going phase position instead of the position register itself. This

means that the Servo Clock and the Phase Clock should be the same. Servo Cycle Extension Period

(Ixx60) can be used to lower the CPU load and not to face quantization errors on the PID loops if the high

Servo rates cause problems.

Since the output value of the ECT is already shifted left by 5-bits, the value in the Ixx71 would be equal

to 2^20 x 32 = 33554432, but the maximum valid value for the Ixx71 is 16777216 which is half the value

we require. In this case we would use a ratio between Ixx71 and Ixx70. As an example, assume a 20-bit

encoder is mounted on a Yaskawa motor which has 4 pole pairs, in this case we would set Ixx70 = 1 and

Ixx71 = 33554432/4 = 8388608 .

If the user wants to use the absolute feedback for power-on phasing with no motion, a similar approach

would be used however the single turn data would be sufficient for phasing the motor.

Here is an example of how to determine the power-on phasing based on absolute data. The following

procedure is only required once. After determining the phase reference value, a power on PLC would be

sufficient to establish the phase reference and motor will be ready for commutation.

1. Tune the current loop on the motor (after setting correct values for Ixx00, Ixx01, Ixx24, Ixx82,

Ixx84, Ixx57, Ixx58, Ixx69 and Ixx66, use the tuning software and tune the current loop i.e.

Ixx61, Ixx62 and Ixx76).

2. Set a positive value (usually 10% of Ixx66) to Ixx79 and set Ixx29=0 and Issue an O0 command

(open loop, zero output).

3. Read the Single turn data. (for the first channel, the data would be at Y:$78B20,0,24 but you have

to divide the number by 16 to shift the data 4-bits to right.

4. Set the Ixx79 back to its original value and issue a kill.

5. The following PLC will set up the phase reference.

#define FirstWord M1000

#define STD0_19 M1002

FirstWord->Y:$78C00,0,24

STD0_19->*

#define Mtr1PhasePos M171 ; Suggested M-Variable definition

#define Mtr1PhaseSrchErr M148 ; Suggested M-Variable definition

#define MeasPhaseRef 30000 ; Measured Single Turn Value based on the test above

open plc 29 clear

STD0_19 = int ((FirstWord & $FFFFF0) / 16);

if (STD0_19 !< MeasPhaseRef)

 Mtr1PhasePos = (STD0_19 – MeasPhaseRef) * 32 ;

Else

 Mtr1PhasePos = (1048576 – MeasPhaseRef + STD0_19) * 32;

EndIf

Mtr1PhaseSrchErr = 0;

disable plc 28

close

ACC-84E User Manual

Appendix A: Setup Examples 117

17-Bit Yaskawa Sigma II Incremental Encoder:

Y:$78B21 Y:$78B20

ZWVUS0S1S2S3S4S5S6S7S8S9S10S11S12S13S14S15S16S6S7S8S9S10S11S12S13S14S15S16

ZIncremental Position in Single Turn (17-bits)Incremental Compensation (11-bits)Undetermined

322010

Hall SignalsUndet.N

0126

Encoder Conversion Table Setup for on-going servo position and commutation:

Channel ECT Line Settings

1st Channel 1st Line $200000 + Base Address + $0

2nd Line $011006

2nd Channel 1st Line $200000 + Base Address + $4

2nd Line $011006

3rd Channel 1st Line $200000 + Base Address + $8

2nd Line $011006

4th Channel 1st Line $200000 + Base Address + $C

2nd Line $011006

Example:

17-bit incremental encoder on channel 1 of ACC-84E with base address set to $78C00:
I8000=$278C00

I8001=$011006

Homing of incremental encoder based on its index
This section explains how to use the encoder internal flags and data for homing to internal index pulse

which happens once per revolution. If the user simply wants to home to an external home flag or limit

flag, this can be achieved by using I7mn2 and I7mn3 settings and doing a software capture based upon

Ixx97=1 (software capture is required since the gate array doesn’t see the encoder counts directly a

hardware capture is not possible). A combination of external flag and incremental index pulse is also

possible.

In order to use the internal index pulse of the encoder and its flags, the following steps should be

followed:

1. Bit 14 of the alarm indicates whether the index has been detected since the last power-up or not.

2. The motor should be jogged until the bit 14 of the alarm codes becomes low.

3. Once this bit is low, the encoder will place the “incremental compensation” value in the lower 11

bits of the second word.

4. By subtracting the “incremental compensation” from the “incremental position,” the true position

from the index can be calculated.

The following code is an example on how to do the homing based upon the steps above. It is strongly

recommended that home search moves be conducted at a slow speed.

#define FirstWord M1000

#define SecondWord M1001

#define OriginNotPassed M1002

FirstWord->Y:$78C00,0,24

SecondWord->Y:$78C01,0,24

OriginNotPassed->Y:$78C02,14

#define Mtr1ActPos M162 ; Suggested M-Variable Definition, Mtr 1 Actual Position

open plc 29 clear

if (OriginNotPassed = 1)

 cmd “#1j+“ ; start moving toward the positive direction

 while (OriginNotPassed = 1) ; until the index is detected

 endwhile

ACC-84E User Manual

Appendix A: Setup Examples 118

 cmd “#1k”

endif

while (Secondword & $8FF = 0) ; there is a 2msec delay before inc. comp. is updated

endwhile

Mtr1ActPos = (int ((FirstWord & $8FFFC0) / $40) – (SecondWord & $8FF) * $40) * i108 * 32

disable plc 29

close

Power-on phase referencing using Hall sensors
The Hall sensor data comes back on bits 1, 2 and 3 of the first word. This data can be used in order to

establish an estimated phase reference for the motor on power-up. However, hall phasing will have ±30°

error, which can result in loss of up to 14 percent of the torque output, but usually this is good enough for

moving the motor until a more accurate reference is established (homing) and phase position data is

updated accordingly.

Here is an example of how to determine the power-on phasing based on hall data. The following

procedure is only required once. After determining the phase reference value, a power-on PLC would be

sufficient to establish the phase reference and motor will be ready for commutation. Once the motor is

moving and a better position reference can be established (usually homing sequence), the phase position

can be fine-tuned.

1. Tune the current loop on the motor (after setting correct values for Ixx00, Ixx01, Ixx24, Ixx82,

Ixx84, Ixx57, Ixx58, Ixx69 and Ixx66, use the tuning software and tune the current loop i.e.

Ixx61, Ixx62 and Ixx76).

2. Set the Ixx70 and Ixx71 based upon the type of encoder you have (for a 17-bit incremental

encoder, Ixx71 = 131072 and Ixx70 = [number of pole pairs] and Ixx83 would be pointing to the

correct Encoder Conversion Table Entry).

3. Set a positive value (usually 10 percent of Ixx66) to Ixx79 and set Ixx29=0 and Issue an O0

command (open loop, zero output).

4. Read the hall sensor data. This data can be read for the first encoder at Y:$78B20,0,4. We are

interested only in bits 1 through 3 so the value should be shifted right by one bit or simply divide

it by 2. This will be a number between 1 to 6 (a value of 0 or 7 is not valid)

5. Set Mxx71=0.

6. Set the Ixx79 back to its original value and issue a kill.

7. The following PLC will set up the phase reference.

Note

The Phase###Pos definition will change based on the number that is

read during step 4 of the setup procedure explained earlier.

ACC-84E User Manual

Appendix A: Setup Examples 119

Step 4

Value

Definitions Step 4

Value

Definitions

1 #define Phase30Deg 1

#define Phase90Deg 5

#define Phase150Deg 4

#define Phase210Deg 6

#define Phase270Deg 2

#define Phase330Deg 3

 4 #define Phase30Deg 4

#define Phase90Deg 6

#define Phase150Deg 2

#define Phase210Deg 3

#define Phase270Deg 1

#define Phase330Deg 5

2 #define Phase30Deg 2

#define Phase90Deg 3

#define Phase150Deg 1

#define Phase210Deg 5

#define Phase270Deg 4

#define Phase330Deg 6

 5 #define Phase30Deg 5

#define Phase90Deg 4

#define Phase150Deg 6

#define Phase210Deg 2

#define Phase270Deg 3

#define Phase330Deg 1

3 #define Phase30Deg 3

#define Phase90Deg 1

#define Phase150Deg 5

#define Phase210Deg 4

#define Phase270Deg 6

#define Phase330Deg 2

 6 #define Phase30Deg 6

#define Phase90Deg 2

#define Phase150Deg 3

#define Phase210Deg 1

#define Phase270Deg 5

#define Phase330Deg 4

#define FirstWord M1000

#define Halls M1002

FirstWord->Y:$78C00,0,24

Halls->*

#define Mtr1PhasePos M171 ; Suggested M-Variable definition

#define Mtr1PhaseSrchErr M148 ; Suggested M-Variable definition

#define Phase30Deg 1

#define Phase90Deg 5

#define Phase150Deg 4

#define Phase210Deg 6

#define Phase270Deg 2

#define Phase330Deg 3

open plc 29 clear

Halls = int ((FirstWord & $E) / 2);

If (Halls = Phase30Deg)

 Mtr1PhasePos = I171 * 30 / 360;

Endif

If (Halls = Phase90Deg)

 Mtr1PhasePos = I171 * 90 / 360;

Endif

If (Halls = Phase150Deg)

 Mtr1PhasePos = I171 * 150 / 360;

Endif

If (Halls = Phase210Deg)

 Mtr1PhasePos = I171 * 210 / 360;

Endif

If (Halls = Phase270Deg)

 Mtr1PhasePos = I171 * 270 / 360;

Endif

0° 60° 120° 180° -120° -60° 0°-60° 60°

1

2

3

4

5

6

ACC-84E User Manual

Appendix A: Setup Examples 120

If (Halls = Phase330Deg)

 Mtr1PhasePos = I171 * 330 / 360;

Endif

Mtr1PhaseSrchErr = 0;

disable plc 28

close

13-Bit Yaskawa Sigma II Incremental Encoder:

Y:$78B21 Y:$78B20

ZWVUS0S1S2S3S4S5S6S7S8S9S10S11S12S2S3S4S5S6S7S8S9S10S11S12

ZIncremental Position in Single Turn (13-bits)Incremental Compensation (11-bits)Undetermined

322010

Hall SignalsUndeterminedN

01210

Encoder Conversion Table Setup for on-going servo position and commutation:

Channel ECT Line Settings

1st Channel 1st Line $200000 + Base Address + $0

2nd Line $00D00A

2nd Channel 1st Line $200000 + Base Address + $4

2nd Line $00D00A

3rd Channel 1st Line $200000 + Base Address + $8

2nd Line $00D00A

4th Channel 1st Line $200000 + Base Address + $C

2nd Line $00D00A

Example:

13-bit incremental encoder on channel 1 of ACC-84E with base address set to $78C00:
I8000=$278C00

I8001=$00D00A

ACC-84E User Manual

Appendix A: Setup Examples 121

Homing of incremental encoder based on its index
This section explains how to use the encoder internal flags and data for homing to internal index pulse

which happens once per revolution. If the user simply wants to home to an external home flag or limit

flag, this can be achieved by using I7mn2 and I7mn3 settings and doing a software capture based upon

Ixx97=1 (software capture is required since the gate array doesn’t see the encoder counts directly a

hardware capture is not possible). Also, a combination of external flag and incremental index pulse is

possible.

In order to use the internal index pulse of the encoder and its flags, the following steps should be

followed:

1. Bit 14 of the alarm indicates whether the index has been detected since the last power-up or not.

2. The motor should be jogged until the bit 14 of the alarm codes becomes low.

3. Once this bit is low, the encoder will place the “incremental compensation” value in the lower 11

bits of the second word.

4. By subtracting the “incremental compensation” from the “incremental position” the true position

from the index can be calculated.

The following code is an example of how to do the homing based upon the steps above. It is strongly

recommended that home search moves be conducted at a slow speed.
#define FirstWord M1000

#define SecondWord M1001

#define OriginNotPassed M1002

FirstWord->Y:$78C00,0,24

SecondWord->Y:$78C01,0,24

OriginNotPassed->Y:$78C02,14

#define Mtr1ActPos M162 ; Suggested M-Variable Definition, Mtr 1 Actual Position

open plc 29 clear

if (OriginNotPassed = 1)

 cmd “#1j+“ ; start moving toward the positive direction

 while (OriginNotPassed = 1) ; until the index is detected

 endwhile

 cmd “#1k”

endif

while (Secondword & $8FF = 0) ; there is a 2msec delay before inc. comp. is updated

endwhile

Mtr1ActPos = (int ((FirstWord & $8FFC00) / $400) – (SecondWord & $8FF) * $4) * i108 * 32

disable plc 29

close

ACC-84E User Manual

Appendix A: Setup Examples 122

Power-on phase referencing using Hall sensors
The Hall sensor data comes back on bits 1, 2 and 3 of the first word. This data can be used in order to

establish an estimated phase reference for the motor on power-up. However, hall phasing will have ±30°

error, which can result in loss of up to 14 percent of the torque output, but usually this is good enough for

moving the motor until a more accurate reference is established (homing) and phase position data is

updated accordingly.

Here is an example of how to determine the power-on phasing based on hall data. The following

procedure is only required once. After determining the phase reference value, a power-on PLC would be

sufficient to establish the phase reference and motor will be ready for commutation. Once the motor is

moving and a better position reference can be established (usually homing sequence), the phase position

can be fine tuned.

1. Tune the current loop on the motor (after setting correct values for Ixx00, Ixx01, Ixx24, Ixx82,

Ixx84, Ixx57, Ixx58, Ixx69 and Ixx66, use the tuning software and tune the current loop i.e.

Ixx61, Ixx62 and Ixx76).

2. Set the Ixx70 and Ixx71 based upon the type of encode you have. (for a 13-bit incremental

encoder, Ixx71 = 8192 and Ixx70 = [number of pole pairs] and Ixx83 would be pointing to the

correct Encoder Conversion Table Entry).

3. Set a positive value (usually 10 percent of Ixx66) to Ixx79 and set Ixx29=0 and Issue an O0

command (open loop, zero output).

4. Read the hall sensor data. This data can be read for the first encoder at Y:$78B20,0,4. We are

interested only in bits 1 through 3 so the value should be shifted right by one bit or simply divide

it by 2. This will be a number between 1 to 6 (a value of 0 or 7 is not valid).

5. Set Mxx71=0.

6. Set the Ixx79 back to its original value and issue a kill.

7. The following PLC will set up the phase reference.

Note

The Phase###Pos definition will change based on the number that is

read during step 4 of the setup procedure explained earlier.

Step 4

Value

Definitions Step 4

Value

Definitions

1 #define Phase30Deg 1

#define Phase90Deg 5

#define Phase150Deg 4

#define Phase210Deg 6

#define Phase270Deg 2

#define Phase330Deg 3

 4 #define Phase30Deg 4

#define Phase90Deg 6

#define Phase150Deg 2

#define Phase210Deg 3

#define Phase270Deg 1

#define Phase330Deg 5

2 #define Phase30Deg 2

#define Phase90Deg 3

#define Phase150Deg 1

#define Phase210Deg 5

#define Phase270Deg 4

#define Phase330Deg 6

 5 #define Phase30Deg 5

#define Phase90Deg 4

#define Phase150Deg 6

#define Phase210Deg 2

#define Phase270Deg 3

#define Phase330Deg 1

3 #define Phase30Deg 3

#define Phase90Deg 1

#define Phase150Deg 5

#define Phase210Deg 4

#define Phase270Deg 6

#define Phase330Deg 2

 6 #define Phase30Deg 6

#define Phase90Deg 2

#define Phase150Deg 3

#define Phase210Deg 1

#define Phase270Deg 5

#define Phase330Deg 4

ACC-84E User Manual

Appendix A: Setup Examples 123

#define FirstWord M1000

#define Halls M1002

FirstWord->Y:$78C00,0,24

Halls->*

#define Mtr1PhasePos M171 ; Suggested M-Variable definition

#define Mtr1PhaseSrchErr M148 ; Suggested M-Variable definition

#define Phase30Deg 1

#define Phase90Deg 5

#define Phase150Deg 4

#define Phase210Deg 6

#define Phase270Deg 2

#define Phase330Deg 3

open plc 29 clear

Halls = int ((FirstWord & $E) / 2);

If (Halls = Phase30Deg)

 Mtr1PhasePos = I171 * 30 / 360;

Endif

If (Halls = Phase90Deg)

 Mtr1PhasePos = I171 * 90 / 360;

Endif

If (Halls = Phase150Deg)

 Mtr1PhasePos = I171 * 150 / 360;

Endif

If (Halls = Phase210Deg)

 Mtr1PhasePos = I171 * 210 / 360;

Endif

If (Halls = Phase270Deg)

 Mtr1PhasePos = I171 * 270 / 360;

Endif

If (Halls = Phase330Deg)

 Mtr1PhasePos = I171 * 330 / 360;

Endif

Mtr1PhaseSrchErr = 0;

disable plc 28

close

0° 60° 120° 180° -120° -60° 0°-60° 60°

1

2

3

4

5

6

ACC-84E User Manual

Appendix A: Setup Examples 124

BiSS-C Feedback Setup Example:

The following example demonstrates how to set up a 26-bit Resolute BiSS-C encoder for position control

of a brushless motor on the first channel of an ACC-84E. Assume that the documentation for the encoder

suggests 2MHz clock for the length of the cable that we have in the system:

Channel is reading a 26-bit BiSS-C Encoder. Note that the full 26-bit encoder data is used for absolute

power-on position but the commutation/on-going position is limited to 24 bits by the Encoder Conversion

Table (ECT).

X:$78C0F

01234567891011121314151617181920212223

M Divisor N Divisor Reserved
Trigger

Clock

Trigger

Edge
Trigger Delay Protocol Code

110100000000010011000110

B00036

WX:$78C0F,$63000B ; Global Control register, 2 MHz Clock setting

Channel 1:X:$78B20

01234567891011121314151617181920212223

010110010010100010000100

A94112

Reserved
Trigger

Mode

Trigger

Enable
StatusBits Position BitsReseved

RxData

Ready/

SENC
CRC_Mask Reseved

WX:$78C00,$21149A ; Ch1 Control register, 37-Bit EnDat Encoder

Assigning values to the control registers should be performed upon power-up/reset in the initialization

PLC.

Open plc 1 Clear

Disable plc 2..31

cmd"wx:$78C0F,$63000B" ; Global Control register, 1 MHz Clock setting

cmd"wx:$78C00,$21149A" ; Channel 1, read 26 bits

Disable plc 1

Enable plc 2..31

Close

Encoder conversion table setup required for BiSS-C encoder connected to the first channel on ACC-84E

at base address set to $78C00 will be as follows:
I8000=$2F8B20 ; Unfiltered parallel position of location

 ; Y:$78B20, no shifting

I8001=$18000 ; 24-bit processed result at $3502

I8002=$2F8B20 ; Unfiltered parallel position of location

 ; Y:$78B20, no shifting

I8003=$17003 ; 23-bit read starting at bit 2,processed result at $3504

 ; for commutation

I103=$3502 ; position loop feedback address

I104=$3502 ; velocity loop feedback address

ACC-84E User Manual

Appendix A: Setup Examples 125

Usually the number of counts in BiSS-C encoders are much higher than normal incremental encoders, the

default settings for position and velocity feedback scale factors (a value of 96) can cause resolution

restrictions on Servo gain settings. It is recommended that the scale factors be set to a smaller value.
I108=1 ; Motor1 position scale factor required not to saturate the Velocity

I109=1 ; Motor1 velocity-loop scale factor

Also, notice that the entries in ECT are not shifting the data. This means LSB of encoder data is 1/32 of a

count as shown in position window. This can be crucial for preventing velocity limitations due to

overflowing velocity registers in PMAC. The maximum velocity acceptable by PMAC is (
183 (2 1))

or 786431 counts per millisecond. Notice that this can be achieved very easily with a high resolution

encoder. For example, a 26-bit encoder, if the data is shifted so LSB represents a count for PMAC, then

only a maximum velocity of 700 RPM can be achieved. However, if the LSB of position data is used as

1/32 of a count, the maximum speed increases to 22,400 RPM.

 18

26

3. 2 1 counts per msec
0.011718705 rev per msec = 703.12 RPM

2 counts per rev

Commutation with High Resolution Encoders (more than 23 bits per
revolution)

The commutation in PMAC is based upon settings of Ixx70 and Ixx71 which define the number of pole

pairs per revolution and the number of counts per revolution. Although the range for Ixx70 is not an issue

with actual motors, the range of Ixx71 (24 bit value) can be a limitation when used with high resolution

encoders.

The maximum value which can be assigned to Ix71 is a value of 16777215 or (
242 1) meaning if the

encoder generates more than 16777215 counts per revolution, we would have a problem setting the Ix71.

In order to overcome this problem, a second entry in encoder conversion table can be utilized. In this

entry, instead of reading the LSB of the position data, the upper 23 bits of data will be read. For example,

in a 26 bit encoder, the second encoder conversion table entry would be set as follows:
I8002=$2F8B20 ; Unfiltered parallel position of location

 ; Y:$78B20, no shifting

I8003=$17003 ; 23-bit read starting at bit 3; Processed result at $3504

 ; for commutation

I183=$3504 ; on-going phase position

These settings will cause the ECT to read the upper 23 bits of position information starting at bit 3

(23+3=26 bits). Although the encoder generates
262 counts per revolution, the output of ECT for this

entry will only pass the upper 23 bits of data for use in commutation of the motor. The following table

shows a few suggestions depending on the position bits of different encoders.

Encoder Resolution 2nd line

26 bit $17003

32 bit $17009

So the commutation parameters will be set as follows:
I171=8388608 ; 23 bit data position per revolution

I170=2 ; 2 pole pair motor

ACC-84E User Manual

Appendix A: Setup Examples 126

Absolute Power-On Servo Position

Since the BiSS-C protocol can provide absolute position, home search moves become redundant.

Although the ECT entry will read the on-going position, it is only looking at lower 24 bits of position data

and if the encoder position has more than 24-bits resolution, the higher bits are being neglected. In this

case a power-on sequence should read all the bits and assigns them to actual position of the motor. There

are two approaches for performing this task depending on ECT setup and whether the data is shifted or

not.

Shifted Position Data
For shifted data, the approach is very simple and it uses the internal Ixx10 and Ixx95 settings of the Turbo

PMAC in order to read all the position bits and assign them to actual position. The required values for

Ixx10 depend on the base address of the card and channel number as shown in the table below:

Base

Address

Ixx10

For 1st

channel

Ixx10

For 2nd

channel

Ixx10

For 3rd

channel

Ixx10

For 4th

channel

$78C00 $78C00 $78C04 $78C08 $78C0C

$79C00 $79C00 $79C04 $79C08 $79C0C

$7AC00 $7AC00 $7AC04 $7AC08 $7AC0C

$7BC00 $7BC00 $7BC04 $7BC08 $7BC0C

$78D00 $78D00 $78D04 $78D08 $78D0C

$79D00 $79D00 $79D04 $79D08 $79D0C

$7AD00 $7AD00 $7AD04 $7AD08 $7AD0C

$7BD00 $7BD00 $7BD04 $7BD08 $7BD0C

$78E00 $78E00 $78E04 $78E08 $78E0C

$79E00 $79E00 $79E04 $79E08 $79E0C

$7AE00 $7AE00 $7AE04 $7AE08 $7AE0C

$7BE00 $7BE00 $7BE04 $7BE08 $7BE0C

Setting of Ixx10 causes the PMAC to read the data in the address location as servo position upon

execution of $* or $** command or upon power-on/reset if bit 2 of Ixx80 is set to 1. However, Ixx95

needs to be setup in order to identify how to read the position data from register defined by Ixx10. Since

the data is in parallel format and in Y-memory, bits 16 to 21 of Ixx95 defines the length of the data. For

example:

Position Bits Ixx95 Setting

18 $120000

26 $1A000

32 $200000

No-Shift Position Data
If the position data is not shifted in ECT (which is usually done in order to prevent any velocity

limitations), the LSB of position data reported by encoder equals to 1/32 of a count motor position.

PMAC’s built-in power-on servo position registers (Ixx10 and Ixx95) cannot be used in this case since

these registers expect the LSB to have a value of 1 count and instead a PLC should read the encoder

registers and write the correct position data to actual position of the motor.

Here is an example on how to read the position data from ACC-84E registers and assign them to motor

actual position in a PLC.
CLOSE

DEL GAT

#define Chn1RegA M2000

#define Chn1RegB M2001

ACC-84E User Manual

Appendix A: Setup Examples 127

Chn1RegA->Y:$78C00,0,24 ; 1st 24-bits of position data

Chn1RegB->Y:$78C01,0,16 ; overflow of the bits

#define Mtr1ActPos M162 ; Suggested M-variable definition

OPEN PLC 10 CLEAR

Mtr1ActPos = (Chn1RegB * $1000000 + Chn1RegA) * I108

DISABLE PLC 10

CLOSE

Absolute Power-On/Reset Phase Position

By knowing the difference between the absolute encoder position and the commutation cycle zero (stored

in Ixx75 in PMAC), a phase search routine is no longer necessary on power-up/reset. In order to have a

power-on/reset phasing based upon the absolute encoder, Ixx81, Ixx91 and Ixx75 needs to be set.

Motor power-on phase position address (Ixx81) should point to the same address used for motor

commutation position address (Ixx83) which is processed data from ECT with lower resolution.

Motor power-on phase position format (Ixx91) setting depends on your settings for commutation specific

ECT entry.

Encoder Resolution ECT 2nd line Ixx91

18 bits $12000 $520000

26 bits $17003 $570000

32 bits $17009 $570000

The following procedure explains that finding Ixx75 is done only once per channel while setting up the

machine for the first time, assuming the mechanics and electronics are not to be changed and have not

failed/been replaced or repaired:

1. Set Ixx79=500 and Ixx29=-500 (The sign of value assigned to Ixx79 should match the sign of

Ixx70 and sign of value for Ixx29 is always opposite to Ixx79).

2. Increase these values by increments of 100 until motor is locked in to a position when O0 is

issued. Acceptable range for Ixx79 and Ixx29 is 0 to Ixx57 (continuous current limit).

3. Issue a #nO0, wait for motor to stop moving.

4. Set Ixx29=0, wait for motor to stop moving.

5. Set Mxx71 to zero (see suggested M-variables).

6. Read position data from ECT X-word where Ixx81 and Ixx83 are pointing (use RX command.

For example: RX:$3504).

7. Set Ixx75 to the negative of the value read in step 6 multiplied by Ixx70 modulo Ix71

 Ixx75= - Position Read While at Zero Phase Ixx70 % Ixx71

8. Set Ixx79=0.

9. Issue a #nK to kill the motor.

The following examples are for typical encoder resolutions available on BiSS-C protocol:
// Renishaw Resolute Rotary Encoder – 18 Bit

wx:$78C0F,$63000B

wx:$78C00,$211492

I8000=$278C00

I8001=$012000

I8002=$2F8C00

I8003=$012000

I8004=$0

I103=$3502

I104=$3502

I183=$3504

i108=1

ACC-84E User Manual

Appendix A: Setup Examples 128

i109=1

I171=262144

I170=2 // motor specific

I180=0

I181=$3504

I191=$520000

I110=$78C00

I195=$120000

// Other I-variables which needs to be set before motor can be used

// in order of setup

// I100, I101, I102, I124, I125, I166, I182, I84, I172, I7mn6

// Tune current loop I161, I162, I176

// I175

// Tune servo loop I130, I131, I132, I133, I134, I135

// Renishaw Resolute Rotary Encoder – 26 Bit

wx:$78C0F,$63000B

wx:$78C00,$21149A

I8000=$2F8C00

I8001=$018000

I8002=$2F8C00

I8003=$017003

I8004=$0

I103=$3502

I104=$3502

I183=$3504

i108=1

i109=1

I171=8388608

I170=2 // motor specific

I180=0

I181=$3504

I191=$570000

CLOSE

DEL GAT

#define Chn1RegA M2000

#define Chn1RegB M2001

Chn1RegA->Y:$78C00,0,24 ; 1st 24-bits of position data

Chn1RegB->Y:$78C01,0,16 ; overflow of the bits

#define Mtr1ActPos M162 ; Suggested M-variable definition

OPEN PLC 10 CLEAR

Mtr1ActPos = (Chn1RegB * $1000000 + Chn1RegA) * I108

DISABLE PLC 10

CLOSE

// Other I-variables which needs to be set before motor can be used

// in order of setup

// I100, I101, I102, I124, I125, I166, I182, I84, I172, I7mn6

// Tune current loop I161, I162, I176

// I175

// Tune servo loop I130, I131, I132, I133, I134, I135

// Renishaw Resolute Rotary Encoder – 32 Bit

wx:$78C0F,$63000B

wx:$78C00,$211420

ACC-84E User Manual

Appendix A: Setup Examples 129

I8000=$2F8C00

I8001=$018000

I8002=$2F8C00

I8003=$017009

I8004=$0

I103=$3502

I104=$3502

I183=$3504

i108=1

i109=1

I171=8388608

I170=2 // motor specific

I180=0

I181=$3504

I191=$570000

CLOSE

DEL GAT

#define Chn1RegA M2000

#define Chn1RegB M2001

Chn1RegA->Y:$78C00,0,24 ; 1st 24-bits of position data

Chn1RegB->Y:$78C01,0,16 ; overflow of the bits

#define Mtr1ActPos M162 ; Suggested M-variable definition

OPEN PLC 10 CLEAR

Mtr1ActPos = (Chn1RegB * $1000000 + Chn1RegA) * I108

DISABLE PLC 10

CLOSE

// Other I-variables which needs to be set before motor can be used

// in order of setup

// I100, I101, I102, I124, I125, I166, I182, I84, I172, I7mn6

// Tune current loop I161, I162, I176

// I175

// Tune servo loop I130, I131, I132, I133, I134, I135

ACC-84E User Manual

Appendix B: Serial link (XY2-100) Protocol Support 130

APPENDIX B: SERIAL LINK (XY2-100) PROTOCOL SUPPORT
The XY2-100 Serial Link (also known as Serial Link 1 and XYZ-100) is a synchronous TIA/EIA-422-B

differential digital interface for communication of three 16-bit position words and a single 16-bit status

word for two- and three-axis servo applications.

Delta Tau introduced support for this protocol in 1st quarter of 2015 on its ACC-84x FPGA Based Serial

Encoder Interface platform. The implementation of XY2-100 is based upon XY2-100 Serial Link 1

Specification by General Scanning (GSI) and expanded to support 18 and 20 bit data formats.

This protocol is available on the following implementations of ACC-84x Series:

 ACC-84E (UMAC, both Turbo and Power PMAC)

 ACC-84C (Compact UMAC or CPCI, both Turbo and Power PMAC)

 ACC-84S (Turbo PMAC2A/PC104, Turbo Clipper and Power Clipper)

 ACC-84B (Power Brick)

 Auxiliary Input for Turbo Brick

Signal Description

Note

The information provided in this section is only for reference and to

provide a better understanding of the implementation. The XY2-100

option of ACC-84x automatically generates proper signals and their

timings defined by XY2-100 protocol.

The XY2-100 Serial Link (or XYZ-100) uses 5 (6 in case of XYZ-100) signals for communication

between the trajectory generation engine (ACC-84x and PMAC) and the scanhead/galvanometer servo

drive.

D0 P C0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 PC2 C1

S0 P S18 S17 S16 S15 S14 S13 S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 S0 P S18

CLOCK

SYNC

X Y Z DATA

STATUS

XY2-100 Timing Diagram

Clock

The Clock is transmitted by the position data generator (ACC-84x), 20 cycles per frame. Its nominal

frequency is 2MHz. With 2MHz clock and 20 cycles per frame, the position data frame is updated every

10μs.

For most galvanometers, the standard internal controller update rate is 20μs, for smaller galvanometers

the update rate is 10μs, for larger inertias a 40μs update rate may be needed.

ACC-84E User Manual

Appendix B: Serial link (XY2-100) Protocol Support 131

ACC-84x implementation of XY2-100 provides capability for changing the clock frequency, which

allows different update rates to scanheads/galvanometers.

Sync

The frame Sync is a single logical "0" pulse, once per frame, transmitted by the position data generator

one clock cycle prior to the first bit of the frame.

X, Y & Z Data

In standard XY2-100 protocol, the X, Y, & Z Data are three 20-bit serial data streams consisting of a

3-bit control code, one 16-bit position word (unsigned, MSB first), and a parity bit (even parity).

ACC-84x implementation of XY2-100 provides capability of transmitting standard 16-bit position data as

described by XY2-100 protocol. In addition, it can transmit 18-bit (compatible with 18-bit Serial Link 2)
and 20-bit (compatible with Canon GM-1000) position data packets. In addition, the variant of the parity

bit (odd or even) can be selected.

Status

The Status data is a 20-bit serial data stream consisting of a 3-bit control code, one 16-bit status

word, and a parity bit (even parity) which is generated by the scanhead/galvanometer servo drive and

read by ACC-84x.

ACC-84E User Manual

Appendix B: Serial link (XY2-100) Protocol Support 132

Connections

There are two groups of connections for ACC-84x, depending on the form factor: DE-9 pin connectors

used on ACC-84E and ACC-84S and DA-15 connectors used in Brick family of products.

Unlike serial encoder interface implementations on ACC-84x where the connectors all have the same pin-

outs and supports 4 channels of same encoder protocol, the XY2-100 combines all channels of the ACC-

84x for interfacing with a galvanometer or scanhead. First 3 channel connects are used for interfacing to

XY2-100 device. A differential PWM output with programmable period, duty cycle and pulse count is

provided on the last channel. This output can be used for control of the laser intensity.

DE-9 Connector Pin Out

The DE-9 connector pin out is used on ACC-84E and ACC-84S.

D-Sub DE9 Female

Mating: D-Sub DE9 Male

2345

9 8 7 6

1

Channel

Pin #
Channel 1 Channel 2 Channel 3 Channel 4

1 STATUS– SYNC– CLOCK– PWM–

2 CHX– CHY– CHZ– N.C.

3 N.C. N.C. N.C. N.C.

4 GND GND GND GND

5 GND GND GND GND

6 STATUS+ SYNC+ CLOCK + PWM+

7 CHX+ CHY+ CHZ+ N.C.

8 N.C. N.C. N.C. N.C.

9 +5VDC +5VDC +5VDC +5VDC

ACC-84E User Manual

Appendix B: Serial link (XY2-100) Protocol Support 133

DA-15 Connector Pin Out

The DA-15 connector pin out is used on Brick Family of products.

D-Sub DA15 Female

Mating: D-Sub DA15 Male

2345678

9101112131415

1

Channel

Pin #
Channel 1 Channel 2 Channel 3 Channel 4

1 A+/SIN+ A+/SIN+ A+/SIN+ A+/SIN+

2 B+/COS+ B+/COS+ B+/COS+ B+/COS+

3 INDEX+ INDEX+ INDEX+ INDEX+

4 +5VDC +5VDC +5VDC +5VDC

5 CHX– CHY– CHZ– N.C.

6 STATUS– SYNC– CLOCK– PWM–

7 2.5V REF 2.5V REF 2.5V REF 2.5V REF

8 PTC PTC PTC PTC

9 A–/SIN– A–/SIN– A–/SIN– A–/SIN–

10 B–/COS– B–/COS– B–/COS– B–/COS–

11 INDEX– INDEX– INDEX– INDEX–

12 GND GND GND GND

13 STATUS+ SYNC+ CLOCK + PWM+

14 CHX+ CHY+ CHZ+ N.C.

15 RES_EXT RES_EXT RES_EXT RES_EXT

Note

Pins/signals indicated in light gray are available on the same X1-X8

connectors on the Brick, but they are not used in conjunction with

XY2-100 protocol. Regardless of the state of XY2-100 (enable or

disabled) these encoder input pins have their original functionality

and can be setup/used as explained in the hardware reference manual

for Brick product in question.

ACC-84E User Manual

Appendix B: Serial link (XY2-100) Protocol Support 134

Signal Termination

All form factors of ACC-84x, incorporates differential line transceivers suitable for high speed

bidirectional data communication. It is designed for balanced data transmission and complies with both

RS-485 and RS-422 EIA Standards. The transmission line of choice for RS-485 communications is a

twisted pair. Twisted pair cable tends to cancel common-mode noise and also causes cancellation of the

magnetic fields generated by the current flowing through each wire, thereby reducing the effective

inductance of the pair. As with any transmission line, it is important that reflections are minimized. This

can be achieved by terminating the extreme ends of the line using resistors equal to the characteristic

impedance of the line.

In general, termination schematic between ACC-84x and Scan-head/galvanometer servo drive as shown

in the diagram below should be implemented. This document recommends use of double shielded twisted

pair cable for XY2-100 link.

C
h

an
n

el 1
C

h
an

n
el 2

C
h

an
n

el 3

CHX+

CHX- 120Ω

STATUS+

STATUS- 120Ω

CHY+

CHY- 120Ω

SYNC+

SYNC- 120Ω

CHZ+

CHZ- 120Ω

CLOCK+

CLOCK- 120Ω

A
C

C
-8

4
x

CHX+

CHX-120Ω

STATUS+

STATUS-120Ω

CHY+

CHY-120Ω

SYNC+

SYNC-120Ω

CHZ+

CHZ-120Ω

CLOCK+

CLOCK-120Ω

Scan
h

ead
 / G

alvan
o

m
eter Servo

 D
rive

Note

Scanhead/Galvanometer servo drive manufacturers often incorporate

termination resistors on their input. Please consult with the

manufacturer data to identify if implementation of external

termination resistor at the drop off point is necessary.

Note

All termination resistors at the ACC-84x is necessary for transmission

of XY2-100 protocol and compliance with RS-485 termination

requirements.

ACC-84E User Manual

Appendix B: Serial link (XY2-100) Protocol Support 135

Setup Elements

Note

This document uses ACC-84E[i] in all mentions are Power PMAC

registers. In case of other form factors, users should use ACC84C[i],

ACC84B[i] and ACC84S[i] instead.

Multi-Channel Setup Element

The multi-channel setup element Acc84E[i].SerialEncCtrl (saved element in Power PMAC only and

non-saved in Turbo PMAC, must be setup in power/initialization PLC) specifies several aspects of the

XY2-100 configuration: trigger enable, the interpolation clock selection and the clock frequency.

The different components of this 24-bit full-word element cannot be accessed as independent elements, so

it is necessary to assemble the full-word value from the values of the individual components. It is easiest

to treat the value as a hexadecimal value, so the individual components can be seen independently.

Power PMAC

Global Control Register

Turbo PMAC

Global Control

Register

Switch Position (SW1)

1 2 3 4

ACC84E[0].SerialEncCtrl X:$78C0F Close Close Close Close

ACC84E[4].SerialEncCtrl X:$79C0F Close Close Open Close

ACC84E[8].SerialEncCtrl X:$7AC0F Close Close Close Open

ACC84E[12].SerialEncCtrl X:$7BC0F Close Close Open Open

ACC84E[1].SerialEncCtrl X:$78D0F Open Close Close Close

ACC84E[5].SerialEncCtrl X:$79D0F Open Close Open Close

ACC84E[9].SerialEncCtrl X:$7AD0F Open Close Close Open

ACC84E[13].SerialEncCtrl X:$7BD0F Open Close Open Open

ACC84E[2].SerialEncCtrl X:$78E0F Close Open Close Close

ACC84E[6].SerialEncCtrl X:$79E0F Close Open Open Close

ACC84E[10].SerialEncCtrl X:$7AE0F Close Open Close Open

ACC84E[14].SerialEncCtrl X:$7BE0F Close Open Open Open

Acc84E[i].SerialEncCtrl is the full-word element that comprises the multi-channel setup for serial

encoder interfaces for the ACC-84E. It is comprised of the following components (which cannot be

accessed as independent elements):

ACC-84E User Manual

Appendix B: Serial link (XY2-100) Protocol Support 136

Component

Turbo PMAC/

Power PMAC

Script Bits

Hex

Digit #

C

Bits
Functionality

ClockMDiv 23 – 16 1 – 2 31 – 24 Clock linear division factor

ClockNDiv 15 – 12 3 23 – 20 Clock exponent division factor

TxEnable 11 4 19 Enables transfer of XY2-100 data

Parity 10 4 18 Selection of parity bit variant

ClockSel 09 4 17 Interpolation clock source select

- 08 4 16 Reserved

ModeSel 07 – 06 5 15 – 14 Transmitted position data resolution select

- 05 – 04 5 13 – 12 Reserved

- 03 – 00 6 11 – 08 Reserved

The components ClockMDiv and ClockNDiv control how the XY2-100 clock frequency is generated from

the IC’s fixed 100 MHz clock frequency. The equation for this clock frequency fXY2 is:

 NXY
M

MHzf
2*1

100
2

where M is short for ClockMDiv. This 8-bit component can take a value from 0 to 255. N is short for

ClockNDiv. This 4-bit component can take a value from 0 to 15, so the resulting 2N divisor can take a

value from 1 to 32,768. Table below includes the most common settings for M and N dividers.

SerialClockMDiv SerialClockNDiv Clock Freq

(MHz)

Update Period

(μsec)

Position Frame

Update Freq (kHz)

24 ($18) 1 ($1) 2.0 MHz 10 100

24 ($18) 2 ($2) 1.0 MHz 20 50

24 ($18) 3 ($3) 0.5 MHz 40 25

The component TxEnable controls whether the XY2-100 position data is being transferred to the

scanhead/galvanometer. Setting this bit to 1 enables the driver circuitry for the XY2-100 Clock, Sync and

Data lines. This bit must be set to 1 to command any scanheads/galvanometers. If there is an alternate use

for the same signal pins, this bit must be set to 0 so the drivers do not conflict with the alternate use.

The component ClockSel controls which Power PMAC clock signal is used for capturing the position data

generated by Power PMAC and perform linear interpolation between the received commands. If motor

trajectory is calculated in servo loop, standard for Power PMAC and only choice in Turbo PMAC, then

the ClockSel should be set to 0 to select Servo Loop. In Power PMAC, if bit 3 (value 8) of

Motor[x].PhaseCtrl is set to 1, this motor will close its position/velocity servo loop on the phase

interrupt. This permits some Power PMAC motors, such as those driving “fast-tool servos” or

galvanometers, to close their loops at a substantially higher frequency than other motors in the system. In

this case ClockSel should be set to 1 to allow interpolation between position updates at Phase rate.

The component ModeSel specifies the X, Y and Z position packet format and position resolution. The

ModeSel allows users to select between 16-bit, 18-bit and 20-bit resolution. The following timing

diagrams show the data format of each ModeSel setting:

ACC-84E User Manual

Appendix B: Serial link (XY2-100) Protocol Support 137

ModeSel = 00

16-bit data format (XY2-100 Standard, Serial Link)

D0 P C0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 PC2 C1

S0 P S18 S17 S16 S15 S14 S13 S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 S0 P S18

CLOCK

SYNC

X Y Z DATA

STATUS

ModeSel = 01

18-bit data format (Serial Link 2)

D0 P D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 P

S0 P S18 S17 S16 S15 S14 S13 S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 S0 P S18

CLOCK

SYNC

X Y Z DATA

STATUS

C0 D17 D16

ModeSel = 10

20-bit data format

D1 D0

S0 P S18 S17 S16 S15 S14 S13 S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 S0 P S18

CLOCK

SYNC

X Y Z DATA

STATUS

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0D16D17D18D19

ModeSel = 11 (Reserved for future)

The following list shows typical settings of Acc84E[i].SerialEncCtrl for a 2MHz transfer clock.
SerialClockMDiv: = $18 // Serial clock frequency = bit transmission frequency

SerialClockNDiv: = 1

TxEnable: = 1 // Enable transmission of XY2-100 position data

Parity: = 1 // Odd parity selection

ClockSel: = 0 // Servo clock selection for interpolation

ModeSel: = $0 // XY2-100 Serial Link Standard (16-bit) position data

For example, for a 2 MHz bit transmission rate, SerialClockMDiv = 24 ($18) and SerialClockNDiv = 1

($1) Acc84E[i].SerialEncCtrl is set to $181C00 for interpolation based upon Servo clock and odd parity

calculation.

Hex Digit ($) 1 8 1 C 0 0 - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value 0 0 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 - -

Component: SerialClockMDiv SerialClockNDiv TE P CS -- ModeSel

Channel Specific Command Register

Each channel of the FPGA has a 24-bit saved setup element Acc84E[i].Chan[j].SerialEncCmd (saved

element in Power PMAC only and non-saved in Turbo PMAC).

Power PMAC Channel

ACC-84E User Manual

Appendix B: Serial link (XY2-100) Protocol Support 138

Channel Control Register Turbo

PAMC Base

Address

1 (j=0) 2 (j=1) 3 (j=2) 4 (j=3)

ACC84E[0].Chan[j].SerialEncCmd $78C00 Y:$78C00 Y:$78C04 Y:$78C08 Y:$78C0C

ACC84E[4].Chan[j].SerialEncCmd $79C00 Y:$79C00 Y:$79C04 Y:$79C08 Y:$79C0C

ACC84E[8].Chan[j].SerialEncCmd $7AC00 Y:$7AC00 Y:$7AC04 Y:$7AC08 Y:$7AC0C

ACC84E[12].Chan[j].SerialEncCmd $7BC00 Y:$7BC00 Y:$7BC04 Y:$7BC08 Y:$7BC0C

ACC84E[1].Chan[j].SerialEncCmd $78D00 Y:$78D00 Y:$78D04 Y:$78D08 Y:$78D0C

ACC84E[5].Chan[j].SerialEncCmd $79D00 Y:$79D00 Y:$79D04 Y:$79D08 Y:$79D0C

ACC84E[9].Chan[j].SerialEncCmd $7AD00 Y:$7AD00 Y:$7AD04 Y:$7AD08 Y:$7AD0C

ACC84E[13].Chan[j].SerialEncCmd $7BD00 Y:$7BD00 Y:$7BD04 Y:$7BD08 Y:$7BD0C

ACC84E[2].Chan[j].SerialEncCmd $78E00 Y:$78E00 Y:$78E04 Y:$78E08 Y:$78E0C

ACC84E[6].Chan[j].SerialEncCmd $79E00 Y:$79E00 Y:$79E04 Y:$79E08 Y:$79E0C

ACC84E[10].Chan[j].SerialEncCmd $7AE00 Y:$7AE00 Y:$7AE04 Y:$7AE08 Y:$7AE0C

ACC84E[14].Chan[j].SerialEncCmd $7BE00 Y:$7BE00 Y:$7BE04 Y:$7BE08 Y:$7BE0C

Position Command Registers

The FPGA always reads full 24-bit registers Acc84E[i].Chan[j].SerialEncCmd, for j equal to 0, 1 and 2,

as signed 24-bit position command for axis X, Y and Z on the rising edge of selected interpolation clock,

set by ClockSel in Acc84E[i].SerialEncCtrl. After reading the update commanded position, firmware

applies a linear interpolation between commanded positions at the frame rate of the XY2-100 update rate

set by components ClockMDiv and ClockNDiv of Acc84E[i].SerialEncCtrl.

Hex Digit ($) - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value P23 P22 P21 P20 P19 P18 P17 P16 P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0 - -

Component: Commanded Position

After interpolation at frame rate of the XY2-100, depending on the ModeSel component of

Acc84E[i].SerialEncCtrl, upper 16-bit, 18-bit or 20-bits of the commanded position data is transmitted

to the scanhead/galvanometer servo drive.

Note

Unlike PMAC convention, in which the position is usually calculated

as a signed integer (signed floating point in case of Power PMAC),

XY2-100 protocol defines it as an unsigned integer. In order to

simplify this conversion, Delta Tau’s implementation of XY2-100 on

ACC-84x products, deals with this conversion of signed position

commands to unsigned values as defined by XY2-100 standard.

ModeSel = 00

16-bit data format (XY2-100 Standard, Serial Link)

Hex Digit ($) - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

ACC-84E User Manual

Appendix B: Serial link (XY2-100) Protocol Support 139

Bit Value P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0 S0 S1 S2 S3 S4 S5 S6 S7 - -

Component: 16-bit Commanded Position 8-bit sub-count

ModeSel = 01

18-bit data format (Serial Link 2)

Hex Digit ($) 0 0 5 C 1 9 - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value P17 P16 P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0 S0 S1 S2 S3 S4 S5 - -
Component: 18-bit Commanded Position 6-bit sub-count

ModeSel = 10

20-bit data format

Hex Digit ($) 0 0 5 C 1 9 - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value P19 P18 P17 P16 P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0 S0 S1 S2 S3 - -

Component: 20-bit Commanded Position 4-bit sub-count

ModeSel = 11 (Reserved for future)

ClockSel
Phase/Servo

PMAC writes desired position based
upon commanded trajectory

FPGA reads desired position at rising
edge of the ClockSel

PMAC Commanded Position

SYNC

XY2-100 Interpolated Position

Separation of frequency domains between Phase/Servo clock and
XY2-100 and linear Interpolation of commanded position

PWM Command Register

The FPGA always reads full 24-bit registers Acc84E[i].Chan[j].SerialEncCmd, for the last channel with

j=3, and it is used for adjusting the PWM output frequency and duty cycle. The number of pulses

outputted can be controlled using the Acc84E[i].Chan[j].SerialEncDataD register. This PWM output is

not a part of XY2-100 protocol, but it is an added feature to ACC-84x with XY2-100 option. This output

is intended to control a Laser source’s power. It is comprised of the following components:

Component

Turbo PMAC/

Power PMAC

Script Bits

Hex

Digit #

C

Bits
Functionality

ACC-84E User Manual

Appendix B: Serial link (XY2-100) Protocol Support 140

DutyCycle 23 – 12 1- 3 31 – 20 Positive duty cycle of output

PwmPeriod 11 – 00 3-6 19 – 08 PWM period of the output

The component PwmPeriod controls the period duration of the PWM output and it is inversely

proportional to the frequency of the signal. The equation for this PWM output frequency fPWM is:

P

kHzfPWM

16

105

where P is short for PwmPeriod. This 12-bit component can take a value from 2 to 4095 and generates

PWM frequencies ranging from 1526 Hz to 3.125 MHz.

Here are some examples for PwmPeriod settings:

PwmPeriod PWM Freq (kHz)

3125 ($C35) 2

1250 ($4E2) 5

625 ($271) 10

312 ($138) 20

125 ($07D) 50

The component DutyCycle controls the positive duty cycle of the PWM+ output signal available on 4th

channel of the ACC-84x and it is independent of the PWM frequency set by PwmPeriod component. The

equation for this PWM duty cycle is:

 100
4096

% CycleDuty Positive
D

where D is short for DutyCycle. This 12-bit component can take a value from 0 to 4095 and generates

duty cycles ranging from 0% to 100%.

Note

If DutyCycle is equal to exactly 4095, the duty cycle is 100%, rather

than the 99.97% the formula would suggest.

Note

Prior to September 2016, the minimum value for PwmPeriod was 1

(corresponding to a maximum frequency of 6.25MHz and a value for

DutyCycle of 4095 corresponded to a duty cycle of 99.97%.

The following list shows typical settings of Acc84E[i].Chan[3].SerialEncCmd for a 5kHz PWM output

at 25% duty cycle.
DutyCycle: = $400 // $400=1024 setting for 25% duty cycle command (1024/4096)

PwmPeiod: = $4E2 // $4E2(1250) setting for PwmPeriod generates a 5kHz PWM freq.

ACC-84E User Manual

Appendix B: Serial link (XY2-100) Protocol Support 141

Hex Digit ($) 4 0 0 4 E 2 - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 1 0 - -
Component: Duty Cycle PwmPeriod

ACC-84E User Manual

Appendix B: Serial link (XY2-100) Protocol Support 142

Status Data Structures

Status elements of ACC-84E are read only elements where the received data and status flags are written

by FPGA at every frame cycle.

Single-Channel Status Elements

Some aspects of the XY2-100 protocol, such as interpolated position data and scanhead/servo drive

provided status bits can be read individually for each channel. Each channel of the FPGA has four 24-bit

status elements:

 Acc84E[i].Chan[j].SerialEncDataA

 Acc84E[i].Chan[j].SerialEncDataB

 Acc84E[i].Chan[j].SerialEncDataC

 Acc84E[i].Chan[j].SerialEncDataD

In XY2-100 protocol, only Acc84E[i].Chan[j].SerialEncDataA register is used for reporting interpolated

values from XY2-100 commands.

The Acc84E[i].Chan[3].SerialEncDataC is used for setting the On-delay time of the first PWM pulse

from setting time of the Acc84E[i].Chan[3].SerialEncDataD register.

The Acc84E[i].Chan[3].SerialEncDataD is used for commanding and monitoring the number of PWM

pulses.

ACC-84E User Manual

Appendix B: Serial link (XY2-100) Protocol Support 143

POWER TURBO

Power PMAC

ACC-84E

Data Register

Channel

1 (j=0) 2 (j=1) 3 (j=2) 4 (j=3)

ACC84E[0] $78C00

Chan[j].SerialEncDataA Y:$78C00 Y:$78C04 Y:$78C08 Y:$78C0C

Chan[j].SerialEncDataB Y:$78C01 Y:$78C05 Y:$78C09 Y:$78C0D

Chan[j].SerialEncDataC Y:$78C02 Y:$78C06 Y:$78C0A Y:$78C0E

Chan[j].SerialEncDataD Y:$78C03 Y:$78C07 Y:$78C0B Y:$78C0F

ACC84E[4] $79C00

Chan[j].SerialEncDataA Y:$79C00 Y:$79C04 Y:$79C08 Y:$79C0C

Chan[j].SerialEncDataB Y:$79C01 Y:$79C05 Y:$79C09 Y:$79C0D

Chan[j].SerialEncDataC Y:$79C02 Y:$79C06 Y:$79C0A Y:$79C0E

Chan[j].SerialEncDataD Y:$79C03 Y:$79C07 Y:$79C0B Y:$79C0F

ACC84E[8] $7AC00

Chan[j].SerialEncDataA Y:$7AC00 Y:$7AC04 Y:$7AC08 Y:$7AC0C

Chan[j].SerialEncDataB Y:$7AC01 Y:$7AC05 Y:$7AC09 Y:$7AC0D

Chan[j].SerialEncDataC Y:$7AC02 Y:$7AC06 Y:$7AC0A Y:$7AC0E

Chan[j].SerialEncDataD Y:$7AC03 Y:$7AC07 Y:$7AC0B Y:$7AC0F

ACC84E[12] $7BC00

Chan[j].SerialEncDataA Y:$7BC00 Y:$7BC04 Y:$7BC08 Y:$7BC0C

Chan[j].SerialEncDataB Y:$7BC01 Y:$7BC05 Y:$7BC09 Y:$7BC0D

Chan[j].SerialEncDataC Y:$7BC02 Y:$7BC06 Y:$7BC0A Y:$7BC0E

Chan[j].SerialEncDataD Y:$7BC03 Y:$7BC07 Y:$7BC0B Y:$7BC0F

ACC84E[1] $78D00

Chan[j].SerialEncDataA Y:$78D00 Y:$78D04 Y:$78D08 Y:$78D0C

Chan[j].SerialEncDataB Y:$78D01 Y:$78D05 Y:$78D09 Y:$78D0D

Chan[j].SerialEncDataC Y:$78D02 Y:$78D06 Y:$78D0A Y:$78D0E

Chan[j].SerialEncDataD Y:$78D03 Y:$78D07 Y:$78D0B Y:$78D0F

ACC84E[5] $79D00

Chan[j].SerialEncDataA Y:$79D00 Y:$79D04 Y:$79D08 Y:$79D0C

Chan[j].SerialEncDataB Y:$79D01 Y:$79D05 Y:$79D09 Y:$79D0D

Chan[j].SerialEncDataC Y:$79D02 Y:$79D06 Y:$79D0A Y:$79D0E

Chan[j].SerialEncDataD Y:$79D03 Y:$79D07 Y:$79D0B Y:$79D0F

ACC84E[9] $7AD00

Chan[j].SerialEncDataA Y:$7AD00 Y:$7AD04 Y:$7AD08 Y:$7AD0C

Chan[j].SerialEncDataB Y:$7AD01 Y:$7AD05 Y:$7AD09 Y:$7AD0D

Chan[j].SerialEncDataC Y:$7AD02 Y:$7AD06 Y:$7AD0A Y:$7AD0E

Chan[j].SerialEncDataD Y:$7AD03 Y:$7AD07 Y:$7AD0B Y:$7AD0F

ACC84E[13] $7BD00

Chan[j].SerialEncDataA Y:$7BD00 Y:$7BD04 Y:$7BD08 Y:$7BD0C

Chan[j].SerialEncDataB Y:$7BD01 Y:$7BD05 Y:$7BD09 Y:$7BD0D

Chan[j].SerialEncDataC Y:$7BD02 Y:$7BD06 Y:$7BD0A Y:$7BD0E

Chan[j].SerialEncDataD Y:$7BD03 Y:$7BD07 Y:$7BD0B Y:$7BD0F

ACC84E[2] $78E00

Chan[j].SerialEncDataA Y:$78E00 Y:$78E04 Y:$78E08 Y:$78E0C

Chan[j].SerialEncDataB Y:$78E01 Y:$78E05 Y:$78E08 Y:$78E0D

Chan[j].SerialEncDataC Y:$78E02 Y:$78E06 Y:$78E09 Y:$78E0E

Chan[j].SerialEncDataD Y:$78E03 Y:$78E07 Y:$78E0A Y:$78E0F

ACC84E[6] $79E00

Chan[j].SerialEncDataA Y:$79E00 Y:$79E04 Y:$79E0B Y:$79E0C

Chan[j].SerialEncDataB Y:$79E01 Y:$79E05 Y:$79E0C Y:$79E0D

Chan[j].SerialEncDataC Y:$79E02 Y:$79E06 Y:$79E0D Y:$79E0E

Chan[j].SerialEncDataD Y:$79E03 Y:$79E07 Y:$79E0E Y:$79E0F

ACC84E[10] $7AE00

Chan[j].SerialEncDataA Y:$7AE00 Y:$7AE04 Y:$7AE08 Y:$7AE0C

Chan[j].SerialEncDataB Y:$7AE01 Y:$7AE05 Y:$7AE09 Y:$7AE0D

Chan[j].SerialEncDataC Y:$7AE02 Y:$7AE06 Y:$7AE0A Y:$7AE0E

Chan[j].SerialEncDataD Y:$7AE03 Y:$7AE07 Y:$7AE0B Y:$7AE0F

ACC84E[14] $7BE00

Chan[j].SerialEncDataA Y:$7BE00 Y:$7BE04 Y:$7BE08 Y:$7BE0C

Chan[j].SerialEncDataB Y:$7BE01 Y:$7BE05 Y:$7BE09 Y:$7BE0D

Chan[j].SerialEncDataC Y:$7BE02 Y:$7BE06 Y:$7BE0A Y:$7BE0E

Chan[j].SerialEncDataD Y:$7BE03 Y:$7BE07 Y:$7BE0B Y:$7BE0F

ACC-84E User Manual

Appendix B: Serial link (XY2-100) Protocol Support 144

ACC84E[i].Chan[j].SerialEncDataA
The FPGA always writes full 24-bit registers Acc84E[i].Chan[j].SerialEncDataA, for j equal to 0, 1 and

2, as signed 24-bit interpolated position command for axis X, Y and Z on the falling edge of interpolation

clock (SYNC). This data is purely for use as simulated feedback for PMAC motors as the position loop is

closed in scanhead/galvanometer drive and only access to status bits about the following error is available

under XY2-100 protocol.

The interpolated position is always written as a 24-bit signed integer. Depending on the ModeSel setting,

user should scale the position values reported in this register to represent 16-bit, 18-bit or 20-bit whole

count position data. Although the XY2-100 only receives the upper 16-bit, 18-bit or 20-bits of position

from the 24-bit interpolated values, the sub-counts are essential for proper interpolation and avoiding

round off errors.

Acc84E[i].Chan[0].SerialEncDataA returns interpolated X Data

Hex Digit ($) - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value P23 P22 P21 P20 P19 P18 P17 P16 P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0 - -

Component: Interpolated Commanded X Position

Acc84E[i].Chan[1].SerialEncDataA returns interpolated Y Data

Hex Digit ($) - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value P23 P22 P21 P20 P19 P18 P17 P16 P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0 - -

Component: Interpolated Commanded Y Position

Acc84E[i].Chan[2].SerialEncDataA returns interpolated Z Data

Hex Digit ($) - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value P23 P22 P21 P20 P19 P18 P17 P16 P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0 - -
Component: Interpolated Commanded Z Position

The 24-bit registers Acc84E[i].Chan[3].SerialEncDataA is update every frame cycle and it includes the

full status word returned by scanhead/galvanometer servo drive.

Note

The status bit definition varies between equipment vendors and it is

strongly recommended for the user to consult with appropriate

documentation on the target hardware for further information on

these status bits.

The status bit definition based upon XY2-100 Serial Link 1 Specification by General Scanning (GSI) is

defined as below.

Hex Digit ($) 0 - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value S18 S17 S16 S15 S14 S13 S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 S0 P - - - - - -
Component: Returned Status Bits

ACC-84E User Manual

Appendix B: Serial link (XY2-100) Protocol Support 145

Bit 2-Axis Status 3-Axis Status

S18 0 0

S17 1 0

S16 1 1

S15 Power Status X Error Status (X Servo Ready)

S14 Temperature Status X Temperature Status

S13 In-field X Tracking Error

S12 X Position Acknowledge 0

S11 Y Position Acknowledge Y Error Status (Y Servo Ready)

S10 1 Y Temperature Status

S9 0 Y Tracking Error

S8 1 0

S7 Power Status Z Error Status (Z Servo Ready)

S6 Temperature Status Z Temperature Status

S5 In-field Z Tracking Error

S4 X Position Acknowledge 0

S3 Y Position Acknowledge Serial Link X Parity Error

S2 1 Serial Link Y Parity Error

S1 0 Serial Link Z Parity Error

S0 1 Serial Link Clock Error

P x (no parity) even parity

ACC84E[i].Chan[j].SerialEncDataC
ACC84E[i].Chan[j].SerialEncDataC with J=0, 1, 2 are not used.

ACC84E[i].Chan[j].SerialEncDataC with J=3 it controls the delay time of the first PWM pulse from

setting time of the Acc84E[i].Chan[3].SerialEncDataD register. This delay ranges from 60 nanoseconds

to 21.06 milliseconds. It is comprised of the following components:

Component

Turbo PMAC/

Power PMAC

Script Bits

Hex

Digit #

C

Bits
Functionality

DelayUnits 23 – 12 1- 3 31 – 20 Defines the length of a delay in nanoseconds

Delay 11 – 00 3-6 19 – 08 Defines the number of delays to wait

Note

Only the lower 9 bits of Delay are read, so its maximum value is 511

($1FF).

The component DelayUnits creates a time unit of a configurable length in nanoseconds. The component

Delay determines how many of those lengths of time should be inserted between the first PWM pulse and

the setting time of the Acc84E[i].Chan[3].SerialEncDataD register. The equation for this configurable

delay is:

 1023Delay Total DelayUnitsDelayns

ACC-84E User Manual

Appendix B: Serial link (XY2-100) Protocol Support 146

Each time a non-zero value is written to Acc84E[i].Chan[3].SerialEncDataD register, a time delay is

inserted before the first PWM pulse is generated.

For example, if a delay of 600 microseconds was desired between each trigger of the

Acc84E[i].Chan[3].SerialEncDataD register and the corresponding PWM pulse, one way it could be

achieved is:

DelayUnits: = $3E6 // 998 in decimal. Each delay will take [(998+2) x 10] = 10000 ns, or 10 microsecond

Delay: = $39 // 57 in decimal. A total of [(57+3)] = 60 delay units will be taken

For a 600 microsecond delay, DelayUnits = 998 ($3E6) and Delay = 57 ($39). This is achieved by setting

Acc84E[i].Chan[3].SerialEncDataC to $3E6039. It should be noted that there may be multiple ways to

achieve a given total delay.

Note

Prior to September 2016, Acc84E[i].Chan[3].SerialEncDataC

directly represented the first pulse delay in microseconds ranging from

0 to 16777215 microseconds.

The new implementation allows a complete time shift for PWM

output compared to motion. This allows not only delay control on the

on-delay but also the off-delay.

ACC84E[i].Chan[j].SerialEncDataD
ACC84E[i].Chan[j].SerialEncDataD with J=0, 1, 2 are not used.

ACC84E[i].Chan[j].SerialEncDataD with J=3 it controls the number of PWM pulses to be outputted.

The number of PWM pulses desired to be outputted from last channel of ACC-84E with XY2-100

protocol is written to Acc84E[i].Chan[3].SerialEncDataD. Reading this register will return the number

of PWM pulses remaining to be outputted and decrements based upon the PWM duty cycle set using the

Acc84E[i].Chan[3].SerialEncCmd register.

If the value for Acc84E[i].Chan[3].SerialEncDataD is 0, no PWM pulses will be sent.

If the value for Acc84E[i].Chan[3].SerialEncDataD is set to a non-zero number (except $FFF or 4095)

which defines the number of PWM pulses desired to be outputted, a PWM signal with frequency and duty

cycle defined by Acc84E[i].Chan[3].SerialEncCmd register is generated. The value in

Acc84E[i].Chan[3].SerialEncDataD is decremented upon each PWM pulse output until its value reaches

0, in which case the PWM output will be stopped automatically. This register can be monitored to

confirm the pulse output completion.

If the value for Acc84E[i].Chan[3].SerialEncDataD is set to its maximum value ($FFF or 4095) an

infinite number of PWM pulses are generated without decrementing this register. This mode can be used

when an unknown number of PWM pulses is required by the application.

Note

Prior to September 2016, Acc84E[i].Chan[3].SerialEncDataD had a

range of 0 to $FFFFFF, or 16777215. Setting it to $FFF would

produce 4095 pulses, but setting it to $FFFFFF would pulse

indefinitely.

ACC-84E User Manual

Appendix B: Serial link (XY2-100) Protocol Support 147

Pointer Definition Example for PWM Output

Note

In Power PMAC firmware 2.0.1 and older, the

Acc84E[i].Chan[3].SerialEncDataC and

Acc84E[i].Chan[3].SerialEncDataD registers are read only. In later

versions these registers are made write enabled and ACC-84E

firmware controls whether the write action affects the data in the

register or not.

The following pointer definitions are used as examples for two ACC-84E used in the same system:

ptr First84PwmMPeriod->u.io:$A00070.8.12;

ptr First84PwmDutyCycle->u.io:$A00070.20.12;

ptr First84PwmDelay->u.io:$A00058.8.12;

ptr First84PwmDelayUnit->u.io:$A00058.20.12;

ptr First84PwmPulseCount->u.io:$A0005C.8.12;

ptr Second84PwmMPeriod->u.io:$A08070.8.12;

ptr Second84PwmDutyCycle->u.io:$A08070.20.12;

ptr Second84PwmDelay->u.io:$A08058.8.12;

ptr Second84PwmDelayUnit->u.io:$A08058.20.12;

ptr Second84PwmPulseCount->u.io:$A0805C.8.12;

open plc 1

// Desired Frequnecy and Duty cycle are set ahead of time

DesiredPwmFreqkHz = 200 ; // kHz

DesiredPwmDutyCycle = 10; // Percent

DesiredPwmDelayUnit = 998; // 10 usec

DesiredPwmDelay = 57; // 600 usec

First84PwmMPeriod = rint(1E5 / (16 * DesiredPwmFreqkHz));

First84PwmDutyCycle = rint(DesiredPwmDutyCycle / 100 * 4096);

First84PwmDelay = rint(DesiredPwmDelay * 1E3);

// Logic for checking the completion of desired PWM pulses

First84PwmPulseCount = 5

p0=Sys.Time;

while (First84PwmPulseCount>0) {}

P0=Sys.Time-P0; // task to be completed after completion of PMW pulses

disable plc 1

close

For the address conversion, tools such as TP2PP, available for download from

http://forums.deltatau.com/showthread.php?tid=238 , can be used.

http://forums.deltatau.com/showthread.php?tid=238

ACC-84E User Manual

Appendix B: Serial link (XY2-100) Protocol Support 148

Power PMAC Setup Example

A few separate setup elements should be modified from their default values for using ACC-84E with

XY2-100 interface protocol as a communication channel between Power PMAC and scanhead. The

following sections outline an example setup where a 2 axis scanhead, driven by a galvo-servo drive is

connected to ACC-84E and motors 1 & 2 of PMAC are setup to control these galvanometers.

ACC-84E Setup Element Example

The servo drive used in this example expects a standard 16-bit position command with a 2MHz serial

clock frequency and odd parity calculation..

SerialClockMDiv: = $18 // Serial clock frequency = bit transmission frequency

SerialClockNDiv: = 1

TxEnable: = 1 // Enable transmission of XY2-100 position data

Parity: = 1 // Odd parity selection (0: Even, 1: Odd)

ClockSel: = 0 // Servo clock selection for interpolation

ModeSel: = $0 // XY2-100 Serial Link Standard (16-bit) position data

For a 2 MHz bit transmission rate, SerialClockMDiv = 24 ($18) and SerialClockNDiv = 1 ($1)

Acc84E[i].SerialEncCtrl is set to $181C00 for interpolation based upon Servo clock and odd parity

calculation.

Hex Digit ($) 1 8 1 C 0 0 - -

Script Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - -

C Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7-4 3-0

Bit Value 0 0 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 - -

Component: SerialClockMDiv SerialClockNDiv TE P CS -- ModeSel

Acc84E[0].SerialEncCtrl = $181C00

Encoder Conversion Table Example

Standard XY2-100 protocol does not provide any real feedback from the galvanometers to PMAC since

the position loop is closed in the servo drive or scanhead and not in the controller. In ACC-84E, XY2-100

implementation, a simulated feedback is provided which provides a pseudo-feedback for use in Power

PMAC ECT. This feedback represents the interpolated position command which is sent to XY2-100 at

1/20 rate of serial clock frequency set by Acc84E[i].SerialEncCtrl.

EncTable[1].type = 1

EncTable[1].pEnc = Acc84E[0].Chan[0].SerialEncDataA.a

EncTable[1].pEnc1 = Sys.pushm

EncTable[1].index1 = 8

EncTable[1].index2 = 8

EncTable[1].index3 = 0

EncTable[1].index4 = 0

EncTable[1].index5 = 0

EncTable[1].index6 = 0

EncTable[1].ScaleFactor = 1

EncTable[2].type = 1

EncTable[2].pEnc = Acc84E[0].Chan[1].SerialEncDataA.a

EncTable[2].pEnc1 = Sys.pushm

EncTable[2].index1 = 8

EncTable[2].index2 = 8

EncTable[2].index3 = 0

EncTable[2].index4 = 0

EncTable[2].index5 = 0

ACC-84E User Manual

Appendix B: Serial link (XY2-100) Protocol Support 149

EncTable[2].index6 = 0

EncTable[2].ScaleFactor = 1

Power PMAC Motor Setup Example

Motor setting in Power PMAC is much simpler in Power PMAC because of built-in position control

servo algorithm. The motor settings required for commanding XY2-100 axis can be separated into couple

of groups. First set of parameters are common regardless of the resolution of XY2-100 drive used.

Motor[1].Ctrl=Sys.PosCtrl

Motor[1].pDac = Acc84E[0].Chan[0].SerialEncCmd.a

Motor[1].pEnc = EncTable[1].a

Motor[1].pEnc2 = EncTable[1].a

Motor[1].pAmpEnable = 0

Motor[1].pAmpFault = 0

Motor[1].pLimits = 0

Motor[1].ServoCtrl = 1

Motor[1].pAbsPos = Acc84E[0].Chan[0].SerialEncDataA.a

Motor[1].AbsPosFormat = $01001808

Motor[1].PowerOnMode=4

Motor[1].FatalFeLimit=0

Motor[1].WarnFeLimit=0

Motor[2].Ctrl=Sys.PosCtrl

Motor[2].pDac = Acc84E[0].Chan[1].SerialEncCmd.a

Motor[2].pEnc = EncTable[2].a

Motor[2].pEnc2 = EncTable[2].a

Motor[2].pAmpEnable = 0

Motor[2].pAmpFault = 0

Motor[2].pLimits = 0

Motor[2].ServoCtrl = 1

Motor[2].pAbsPos = Acc84E[0].Chan[1].SerialEncDataA.a

Motor[2].AbsPosFormat = $01001808

Motor[2].PowerOnMode=4

Motor[2].FatalFeLimit=0

Motor[2].WarnFeLimit=0

The following settings are dependent on the selected data length mode:

ModeSel = 00

16-bit data format (XY2-100 Standard, Serial Link)

Motor[1].PosSf = 1/exp2(16)

Motor[1].Pos2Sf = Motor[1].PosSf

Motor[1].AbsPosSf = 1/exp2(8)

Motor[1].MaxPos = exp2(15)-1

Motor[1].MinPos = -exp2(15)

Motor[1].MaxDac = exp2(15)

Motor[2].PosSf = 1/exp2(16)

Motor[2].Pos2Sf = Motor[2].PosSf

Motor[2].AbsPosSf = 1/exp2(8)

Motor[2].MaxPos = exp2(15)-1

Motor[2].MinPos = -exp2(15)

Motor[2].MaxDac = exp2(15)

ModeSel = 01

ACC-84E User Manual

Appendix B: Serial link (XY2-100) Protocol Support 150

18-bit data format (Serial Link 2)

Motor[1].PosSf = 1/exp2(14)

Motor[1].Pos2Sf = Motor[1].PosSf

Motor[1].AbsPosSf = 1/exp2(6)

Motor[1].MaxPos = exp2(17)-1

Motor[1].MinPos = -exp2(17)

Motor[1].MaxDac = exp2(17)

Motor[2].PosSf = 1/exp2(14)

Motor[2].Pos2Sf = Motor[1].PosSf

Motor[2].AbsPosSf = 1/exp2(6)

Motor[2].MaxPos = exp2(17)-1

Motor[2].MinPos = -exp2(17)

Motor[2].MaxDac = exp2(17)

ModeSel = 10

20-bit data format

Motor[1].PosSf = 1/exp2(12)

Motor[1].Pos2Sf = Motor[1].PosSf

Motor[1].AbsPosSf = 1/exp2(4)

Motor[1].MaxPos = exp2(19)-1

Motor[1].MinPos = -exp2(19)

Motor[1].MaxDac = exp2(19)

Motor[2].PosSf = 1/exp2(12)

Motor[2].Pos2Sf = Motor[1].PosSf

Motor[2].AbsPosSf = 1/exp2(4)

Motor[2].MaxPos = exp2(19)-1

Motor[2].MinPos = -exp2(19)

Motor[2].MaxDac = exp2(19)

Motor Speed/Acceleration Limitations

Power PMAC’s default acceleration and speed setting are set at conservative values. In comparison,

galvanometers and scanheads can complete a full stroke step move in a couple of microseconds. The

following settings are suggested for preventing PMAC from limiting the speeds and accelerations

achievable by the galvos. However, it is suggested that the proper calculated values based upon the

specifications provided by manufactures of the galvos are implemented instead.

ModeSel = 00 16-bit data format (XY2-100 Standard, Serial Link)

Motor[1].MaxSpeed = exp2(15)

Motor[1].InvAMax = 1/exp2(15)

Motor[1].InvDMax = 1/exp2(15)

Motor[1].InvJMax = 1/exp2(15)

Motor[2].MaxSpeed = exp2(15)

Motor[2].InvAMax = 1/exp2(15)

Motor[2].InvDMax = 1/exp2(15)

Motor[2].InvJMax = 1/exp2(15)

ACC-84E User Manual

Appendix B: Serial link (XY2-100) Protocol Support 151

Initializing Motor Position

Although simulated feedback provides interpolated position data for PMAC, there is a caveat in general

with using simulated position feedbacks and that is a potential positive feedback when the motor is in

killed state.

This positive feedback, or virtual runaway at constant speed, is cause by two independent processes

where the result of one, is fed back to the second one and vice versa. The first process is that PMAC

firmware copies the actual position of the motor into its desired position when the motor is killed. This is

necessary in order to prevent any position jumps when the motor is put to closed loop mode. The actual

position of the motor is read from the ECT which is processed at the beginning of the servo cycle. The

commanded position is written to output, ACC84E[i].Chan[j].SerialEncCmd in this case, at the end of

servo calculations but will take effect only on the rising edge of the servo clock which can be as little as

50% delayed until the next ECT execution. If the initial motor position value and commanded value are

the same, there is no problem. But if there is a difference, however small, it will cause a positive feedback

or virtual runaway at constant speed.

In order to prevent this from happening two counter measures should be implemented:

1. User should setup the Motor[x].PowerOnMode register to a value of 4, forcing the read of the

simulated feedback upon power-on/reset.

2. Implement the following code during development of the code where the

Motor[x].PowerOnMode is not active until next power up/reset cycle.

This code breaks the positive feedback for a moment which is sufficient for allowing the

feedback and commanded values for the motor to be equal.

#1..3KILL

EncTable[1].ScaleFactor=0

EncTable[2].ScaleFactor=0

EncTable[3].ScaleFactor=0

Motor[1].HomePos=0

Motor[2].HomePos=0

Motor[3].HomePos=0

Motor[1].Pos=0

Motor[2].Pos=0

Motor[3].Pos=0

// brief delay required here

EncTable[1].ScaleFactor=1

EncTable[2].ScaleFactor=1

EncTable[3].ScaleFactor=1

ACC-84E User Manual

Appendix B: Serial link (XY2-100) Protocol Support 152

Non-linearity of Scanheads

The pin-cushion effect caused by galvanometers, can be corrected using kinematic routines. A typical

configuration of a laser mirror system is shown in isometric view below:

+Xt

+Yt+Xm (C)

+Ym (A)

Basic Laser Mirror Arrangement

The forward and inverse-kinematic equations for a basic system of this type are shown in the following

diagram with orthogonal views of the system:

L1L1

L2

L0

+Xt

+Yt

+Xm (C)

+Ym (A)

+Yt+Xt

+Xm (C)

22

2 tYL
22

2 tYL

YtXt

 CYLLX tt 2tan22

21 ALYt 2tan2

Laser

Path

Length

22

21

1tan
2

1

t

t

YLL

X
C

2

1tan
2

1

L

Y
A t

Basic Laser Mirror Kinematics

All of the actuators, both for the workpiece holder and for the laser control, are defined as inverse-

kinematic axes in the same coordinate system.

Here is a simple implementation of forward and inverse kinematic routines for a given galvanometer:

ACC-84E User Manual

Appendix B: Serial link (XY2-100) Protocol Support 153

global pi = 3.1415926535897932384626433832795; // constant pi

global DegtoRad = 0.01745329251994329576923690768489; // Degrees to Radians

global RadtoDeg = 57.295779513082320876798154814105; // Radians to Degrees

global Len1 = 0.374 * 25.4; // distance between spot center on mirrors at neutral position (mm)

global Len2 = 251; // distance from Y-mirror to XY-stage surface (mm)

global GalvoSF = 10.27/32767; // ratio of XY2-100 command ±32767 to Galvonameter deflection

open forward (1)

 local GalvoXAngD, GalvoYAngD, Ytemp;

 if(KinVelEna==0) KinAxisUsed=$C0;

 GalvoXAngD = KinPosMotor1 * GalvoSF;

 GalvoYAngD = KinPosMotor2 * (-GalvoSF);

 Ytemp = Len2 * tan(GalvoYAngD * DegtoRad);

 KinPosAxisY = Ytemp;

 KinPosAxisX = (Len1+sqrt(pow(Len2,2)+pow(Ytemp,2))) * tan(GalvoXAngD* DegtoRad);

close

open inverse (1)

 KinPosMotor2 = atan(KinPosAxisY/Len2)* RadtoDeg/(-GalvoSF);

 KinPosMotor1 = atan(KinPosAxisX/(Len1+sqrt(pow(Len2,2)+pow(KinPosAxisY,2))))*RadtoDeg/GalvoSF;

close

ACC-84E User Manual

Appendix B: Serial link (XY2-100) Protocol Support 154

Corrections for Scanner/Optics Non-linearity

The inherent non-linearity of the optics and scanners can be compensated for using PMAC’s built-in 2D

compensation tables. This method requires physical marking and measurement of patterns (mostly

uniformly spaced matrix patterns) in order to calculate the correction tables required for each of the

galvos based upon commanded position of them. This method is especially useful if any optics such as

Flat-field, F-theta or Telecenteric lenses are involved and their non-linearities also need to be

compensated.

The following steps should be followed in generating the compensation table:

1. Select a grid size which covers the full command range for the galvanometer (for example a grid

which covers ±32767 if a 16-bit command is used). For this example, a 3D array called

“CmdTable” is constructed with indexes i,j and k for each of the dimensions. The X and Y galvo

command position for node row i and column j are stored in elements k=1 and k=2 respectively.

2. Program the PMAC to generate the grid points defined above on the work piece, by marking or

etching.

3. Identify the resulting locations on the workpiece (an exaggerated version of resulted matrix is

shown below in red with resulting nodes corresponding to CmdTable entries shown in black

dots).

The X and Yposition of each node should to be measured in engineering units, and stored. In this

example the measured locations are stored in a 3D array called “RawTable”. This array has the

same dimensions as the “CmdTable”:

4. Identify the maximum usable workspace with a rectangular outline. Notice that the compensation

table cannot make corrections for rotation, so the selected rectangle direction should match the

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15

ACC-84E User Manual

Appendix B: Serial link (XY2-100) Protocol Support 155

direction of distorted XY field. There are multiple methods for optimizing the best usable area

which are beyond the intended scope of this document. A simple approach in selection of this

area is shown in this example.

5. Generate a table with same dimensions as the “CmdTable” and “RawTable”, called

“BestFitTable” in which the XY coordinates of nodes for the best fit grid are stored. In the picture

above node are shown in blue dots.

The next steps are automated in the code, but explained for reference.

6. Identify mesh element of “RawTable” where each “BestFitTable” node is located.

7. Calculate the interpolated value of “BestFitTable” node, based upon its “RawTable” surrounding

nodes.

8. Transfer the interpolation from “RawTable” to “CmdTable” corresponding nodes/mesh item and

store it in “Corrected” array.

9. The difference between “CmdTable” and “Corrected” table are the entries for the two 2D

compensation tables.

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15

ACC-84E User Manual

Appendix B: Serial link (XY2-100) Protocol Support 156

The following example code is written in MATLAB script, but it can be converted to any language with

array support.

%Main Procedure

Res = 32767;

HalfLen = 10;

MeshSize = 21;

hold off;

plot(RawTable(:,:,1),RawTable(:,:,2),'red');

hold on;

plot(RawTable(:,:,1)',RawTable(:,:,2)','red');

xmin = max(RawTable(1:1,:,1));

xmax = min(RawTable(MeshSize:MeshSize,:,1));

ymin = max(RawTable(:,1:1,2));

ymax = min(RawTable(:,MeshSize:MeshSize,2));

x_temp = linspace(xmin,xmax,MeshSize);

y_temp = linspace(ymin,ymax,MeshSize);

BestFitTable = zeros(MeshSize,MeshSize,2);

for i = 1:MeshSize

 BestFitTable(:,i,1)=x_temp';

 BestFitTable(i,:,2)=y_temp;

end

plot(BestFitTable(:,:,1),BestFitTable(:,:,2),'blue');

plot(BestFitTable(:,:,1)',BestFitTable(:,:,2)','blue');

meshdist = zeros(MeshSize-1,MeshSize-1);

meshid = zeros(MeshSize,MeshSize,2);

for i= 1:MeshSize

 for j=1:MeshSize

 for m = 1:MeshSize-1

 for n = 1:MeshSize-1

 meshdist(m,n) = sqrt((BestFitTable(i,j,1)-RawTable(m,n,1))^2+(BestFitTable(i,j,2)-RawTable(m,n,2))^2) + ...

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15

ACC-84E User Manual

Appendix B: Serial link (XY2-100) Protocol Support 157

 sqrt((BestFitTable(i,j,1)-RawTable(m+1,n,1))^2+(BestFitTable(i,j,2)-RawTable(m+1,n,2))^2) + ...

 sqrt((BestFitTable(i,j,1)-RawTable(m+1,n+1,1))^2+(BestFitTable(i,j,2)-RawTable(m+1,n+1,2))^2) + ...

 sqrt((BestFitTable(i,j,1)-RawTable(m,n+1,1))^2+(BestFitTable(i,j,2)-RawTable(m,n+1,2))^2) ;

 end

 end

 if (BestFitTable(i,j,1)==RawTable(m,n,1) && BestFitTable(i,j,2)==RawTable(m,n,2))

 meshid(i,j,1) = m;

 meshid(i,j,2) = n;

 else

 [MinLen,MinInd]=min(meshdist(:));

 [meshid(i,j,1),meshid(i,j,2)] = ind2sub(size(meshdist),MinInd);

 end

 end

end

Corrected = zeros(MeshSize,MeshSize,2);

for i= 1:MeshSize

 for j=1:MeshSize

 [Corrected(i,j,1),Corrected(i,j,2)] = PlanarInterpolation(...

 CmdTable(meshid(i,j,1):meshid(i,j,1)+1,meshid(i,j,2):meshid(i,j,2)+1,:), ...

 RawTable(meshid(i,j,1):meshid(i,j,1)+1,meshid(i,j,2):meshid(i,j,2)+1,:), ...

 BestFitTable(i,j,1), BestFitTable(i,j,2));

 end

end

The following functions were used in this procedure.

function [Xint, Yint] = PlanarInterpolation(CmdPos, ActPos , Xinput, Yinput)

x1 = ActPos(1,1,1);

y1 = ActPos(1,1,2);

x2 = ActPos(1,2,1);

y2 = ActPos(1,2,2);

x3 = ActPos(2,1,1);

y3 = ActPos(2,1,2);

x4 = ActPos(2,2,1);

y4 = ActPos(2,2,2);

X1 = CmdPos(1,1,1);

Y1 = CmdPos(1,1,2);

X2 = CmdPos(1,2,1);

Y2 = CmdPos(1,2,2);

X3 = CmdPos(2,1,1);

Y3 = CmdPos(2,1,2);

m12=(y2-y1)/(x2-x1);

m13=(y3-y1)/(x3-x1);

m24=(y4-y2)/(x4-x2);

m34=(y4-y3)/(x4-x3);

if (m12==m34)

 m1=m12;

else

 [xe1,ye1] = LineIntersection(x1,y1,x2,y2,x3,y3,x4,y4);

 m1=(ye1-Yinput)/(xe1-Xinput);

end

if (m13==m24)

 m2=m13;

else

 [xe2,ye2] = LineIntersection(x1,y1,x3,y3,x2,y2,x4,y4);

 m2=(ye2-Yinput)/(xe2-Xinput);

end

if (isinf(m1))

 x13 = Xinput;

 y13 = m13*(x13-x1)+y1;

else

 if (isinf(m13))

 x13 = x1;

 y13 = m1 * (x13 - Xinput) + Yinput;

 else

 x13 = (m1*Xinput - m13*x1 +y1 - Yinput)/(m1-m13);

 y13 = m13*(x13-x1)+y1;

 end

end

ACC-84E User Manual

Appendix B: Serial link (XY2-100) Protocol Support 158

if (isinf(m2))

 x12 = Xinput;

 y12 = m12*(x12-x1)+y1;

else

 if (isinf(m12))

 x12 = x1;

 y12 = m2 * (x12 - Xinput) + Yinput;

 else

 x12 = (m2*Xinput - m12*x1 +y1 - Yinput)/(m2-m12);

 y12 = m12*(x12-x1)+y1;

 end

end

ratio1 = sqrt((x12-x1)^2+(y12-y1)^2)/sqrt((x2-x1)^2+(y2-y1)^2);

ratio2 = sqrt((x13-x1)^2+(y13-y1)^2)/sqrt((x3-x1)^2+(y3-y1)^2);

Xint= X1 + ratio2 * (X3-X1);

Yint= Y1 + ratio1 * (Y2-Y1);

end

function [X,Y] = LineIntersection(x1,y1,x2,y2,x3,y3,x4,y4)
X = ((x1*y2-y1*x2)*(x3-x4)-(x1-x2)*(x3*y4-y3*x4))/((x1-x2)*(y3-y4)-(y1-y2)*(x3-x4));
Y = ((x1*y2-y1*x2)*(y3-y4)-(y1-y2)*(x3*y4-y3*x4))/((x1-x2)*(y3-y4)-(y1-y2)*(x3-x4));
end

