SETUP MANUAL

Delta Tau MECHATROLINK-III (ML-III)

Setup Manual

ML-III Control Board

Dec 08, 2014 (REV.1.0.7)

	REVISION HISTORY								
VERSION	DESCRIPTION	DATE	APPVD						
1.0.3	Switch 2 번 설정법 수정.	2014.04.07	이재혁						
1.0.4	Backup Restore 항목 추가	2014.05.26	이명성						
1.0.5	Station ID(Rotary SW) 기본값 수정	2014.06.30	이재혁						
1.0.6	Error Check PLC 예제 추가 및 수정 Cruiser-S Servo 주파수 변경 항목 추가	2014.08.21	이명성						
1.0.7	PMAC Suit Update 에 따른 항목 추가	2014.12.08	이명성						

※ 본 매뉴얼은 필요에 따라 수시로 업데이트 될 수 있으며, 본사 홈페이지에서 최신항목을 다운 받아 사용하시기 바랍니다.

Table of Contents

1.	INTRO	INTRODUCTION						
2.	HARD	VARE SETUP	6					
	2.1.	PMAC Switch Setting	6					
	2.1.	1. SW1: Base Address 설정 (Only for UMAC)	6					
	2.1.	2. SW2: Servo Frequency 분주비 설정	6					
	2.1.	3. SW3: Servo Frequency 출력 설정 (Only for UMAC)	7					
	2.2.	Yaskawa Drive Switch Setup	8					
	2.3.	ML-III Connection	8					
3.	YASKA	WA DRIVE SETUP	10					
	3.1.	Edit Parameters	. 10					
	3.1.	1. USB Interface	10					
	3.1.	2. Ethernet Interface	. 11					
	3.1.	3. Parameter Value	13					
	3.2.	Drive Tuning	14					
4.	SERVO	FREQUENCY SETUP (EXCEPT CRUISER-S)	18					
5.	ML-III	SETUP (MechatroLink Explore)	21					
6.	COMM	AND & STATUS VARIABLES	29					
	6.1.	Connection Command Variables	29					
	6.2.	Scan Status Variables	29					
	6.3.	Connection Status Variables	30					
	6.4.	Amp Alarm Status Variables	30					
	6.5.	Error Check PLC Example	31					
7.	ML-III	HOME SEARCH	34					
	7.1.	Parameters	34					
	7.2.	Home Sequence	36					
	7.3.	Home Search PLC Example	38					
8.	ABSOL	UTE ENCODER READ	41					
	8.1.	ML-III Command List	41					
	8.2.	ML-III Command Address	42					

	8.3.	ABS Encoder Read PLC Example	43
9.	ML-III	통신 FIRMWARE UPGRADE	.46
10	. SERVO) FREQUENCY CHANGE FOR CRUISER-S	47
11	. BACKI	UP & RESTORE	.48

1. INTRODUCTION

- Cruiser 및 UMAC에서 **MECHATROLINK-표(ML-표)**를 통한 slave(축) 제어가 가능합니다..

- 최대 32 축까지 interpolation mode 지원 가능.

OPT-1: 최대 6 축 제어(1 ML-Ⅲ Master)

OPT-2: 최대 32축 제어 (1 ML-표 Master)

OPT-3: 최대 32축 제어 (2 ML-III Masters), OPT-2보다 높은 Servo Frequency 사용가능.

2. HARDWARE SETUP

2.1. PMAC Switch Setting

2.1.1. SW1: Base Address 설정 (Only for UMAC)

SW1 No.1~No.4 를 사용하여 Base Address 를 설정합니다. SW1 No.5, No.6 은 항상 On 이 되어야 합니다.

1	2	3	4	Addr	1	2	3	4	Addr
	Dn Off	On	On	\$68000			On	On	\$74000
0.5		Off	On	\$69000	0#	07	Off	On	\$75000
On		On	Off	\$6A000	OII	On	On	Off	\$76000
		Off	Off	\$6B000			Off	Off	\$77000

※ CRUISER 에서는 Base Address 가 \$74000 으로 고정되어 있습니다.

2.1.2. SW2: Servo Frequency 분주비 설정

- ML-III 사용시 Servo Frequency는 반드시 2의 배수로 설정해 주어야 합니다.

- ML-III 통신 주기는 2KHz 입니다. Servo Frequency 가 2KHz 가 아닐 경우 SW2 를 사용하여 Clock을 분주해 주어야 합니다.

< CRUISER >

Servo	Cruiser
Frequency	SW2
2kHz	0b0000
4kHz	0b0001
6kHz	0b0010
8kHz	0b0011
32kHz	0b1111

< UMAC ML-III Master>

Servo	Umac
Frequency	SW2
2kHz	0b1111
4kHz	0b1110
6kHz	0b1101
8kHz	0b1100
32kHz	0b0000

2.1.3. SW3: Servo Frequency 출력 설정 (Only for UMAC)

- UMAC에서 Servo IC 없이 ML-표 카드 단독으로 제어하기 위해서는 SW 3으로 ML-III Servo Clock 을 설정해 주어야 합니다.

- Servo IC 가 있을 경우(ACC-24E2, 24E2S, 24E2A ...) SW3-3 을 Receive 로 설정해 주시기 바랍니다.

• S

• W3-1,.2

SW3-1	SW3-2	Servo Frequency
Off	Off	2Khz
Off	On	4Khz
On	Off	6Khz
On	On	8Khz

SW3-3

SW3-3	Clock Direction
On	Transmit
Off	Receive

2.2. Yaskawa Drive Switch Setup

YASKAWA servo(∑-V) **Station ID 는 전면 상단의 Rotary switch** 를 통하여 설정 가능 합니다. 두 개의 Rotary switch 조합으로 아래 예와 같이 설정 됩니다. 왼쪽:2 오른쪽: 1 => **ID**: 21 왼쪽:2 오른쪽: 2 => **ID**: 22 위와 같은 방법으로 21 번부터 순차적으로 ID 를 설정 합니다.

※ PMAC Suit 에서 설정되는 ML-III Master Card 의 Default ID 는 21 번부터 부여됩니다. 변경을 원하실 경우 반드시 "MechatroLink Explorer"에서 Station ID 를 변경/저장 하셔야 합니다.(본 매뉴얼의 "ML-III Software Setup" 항목을 참고하세요)

2.3. ML-III Connection

3. YASKAWA DRIVE SETUP

3.1. Edit Parameters

- SigmaWin+ (YASKAWA driver setup program)을 통하여 Driver parameter 를 설정합니다.

3.1.1. USB Interface

A. USB interface 를 통하여 YASKAWA driver 에 연결 합니다. (USB driver 는 SigmaWin+ 설치폴더에 포함되어 있습니다)

B. USB tab 으로 이동 후 search 버튼 Click.

Search Condition Setting	0	Connect		Rody.	14	X
Check off the target that is not needed to search Target Servopack Series Setting F 및 IX F 및 III F 및 III/IIPUS F 및 I F 및 IF 및 MOEXER		Online ->{}	Offine -4			Cr Search
A USB (TT) contrained		Axis No.	Servopack	Servomotor	Option	Axis name
V Search Work search is for a USB communications interface, a batch search is were used to formation on all the USB connection saves of the vehicular series will be searched for:			SGDV-R90A21A	SCMAV-01ADA21		
Search Cancel	l				1	Connect Cancel

C. Search 완료 후 Connect 버튼 Click.

Online 	Offline ~4명			
B USB	Controller			C Search
Axis No.	Servopack	Servomotor	Option	Axis name
11	SGDV-R90A21A	SGMAV-01ADA21		

D. Edit Parameter 버튼 Click.

M	lotor Power on Motor Runnin	Torque Ref	erence	Main Circuit		Mot	or base	blocked (BB)	
× Edit	Parameters									
1	🛚 🎿 📲 🔘 i	0 🗖 🖻 🖲	s 🛓 🖪 🖉		a 🗶 7) 💁 💁 🤤	ሬ 🎳 🔂	7 🦦 🖏 🕅		Q 🔚
File(E) Parameters(U) Alarm(A)	Monitor(M)	Setup(S)	Trace(T)	Tuning(G)	Test Run(F) Edit Table(I)	Solution(O)	Help(H

3.1.2. Ethernet Interface

- eXcom port 를 통하여 YASKAWA driver 에 연결 합니다. eXcom port 를 통한 Ethernet 연결은 Cruiser or UMAC 에서 미리 Station 의 search 가 완료 되어 있어야 가능 합니다.

- ML-Ⅲ Software setup page 를 참고하여 MechatroLink 에서 search 까지 진행 하여야 합니다.

- Eternet 을 사용하여 Yaskawa Drive 를 Setup 하기 위해서는 반드시 eXcom 포트에 Ethernet Cable 이 꽂혀있어야 합니다.

 A. eXcom port의 IP를 추가 하여야 합니다.

 PC의 제어판 -> IP 환경 설정에서 "고급" Click

TCP/IP 추가 IP: 192.6.95.1 subnet mask : 255.255.255.0

Internet Protocol Version 4 (TCP/IPv4) 속성	8 ×	고급 TCP/IP 설정 양 X
일반		IP 설정 DNS WINS
네트워크가 IP 자동 설정 기능을 지원히 할 수 있습니다. 지원하지 않으면, 네트 를 분의해야 합니다. ◎ 다음 IP 주소 사용(S): IP 주소(I): 서브넷 마스크(U): 기본 게이트웨이(D):	면 IP 설정이 자동으로 할당되도록 워크 관리자에게 적절한 IP 설정값 192 . 6 . 94 . 3 255 . 255 . 255 . 0	IP 주소(R) IP 주소 서브넷 마스크 192.6.95.1 255.255.0 ************************************
 ● 자동으로 DNS 서비 주소 받기(B) ● 다음 DNS 서비 주소 사용(E): 기본 설정 DNS 서비(P): 보조 DNS 서비(A): 		대 구도(), 12 , 0 , 33 , 1 서브넷 마스크(S): 12 , 255 , 255 , 0 추가(A) 취소 인터페이스 메트릭(N):
🔲 끝낼 때 설정 유효성 검사(L)	고급(V)	
	확인 취소	<u>확인</u> 취소

B. SigmaWin+ 실행 후 search 버튼 Click.

Control	ter]				C Search
line nu	Axis No.	Servopack	Servomotor	Axis name	Comments for axis

C. Controller tap 에서 아래와 같이 설정함.

D. Search 완료 후 Connect 버튼 Click. (각각의 Slave 에 개별적으로 Connect 합니다)

E. Edit Parameter 버튼 Click.

3.1.3. Parameter Value

NO	Function	Value	Description
D m000	Motor direction coloct	0000H(CCW)	Nibble0=0 or 1
Photo	Motor direction select	0001H(CW)	모터의 방향을 전환 할 경우 조정
DwOOD	Matar abasa salast	0000H(3phase)	Nibble2=0 or 1
Phoop	Motor phase select	0100H(1phase)	단상/3상 모터 선택
Dn20E	Electronic Gear ratio	1049576(20.20)	전자기어 분모
PIIZUE	Numerator	1046370(2*20)	20bit encoder
Dn210	Electronic Gear ratio	1 10/2576	전자기어 분자
FIIZIO	Denominator	1~1048370	Encoder Count/ Rev
Dn50A	P-OT Disable	88811	Nibble3=8
FIIJOA		00011	드라이버 정회전 금지 disable
Dn50B	N-OT Disable	000011	Nibble0=8
FIISOD		000011	드라이버 역회전 금지 disable
Positioning Completed		0	Set 0 to eliminate position offset
111522	Width	0	between Cruiser and driver.
Dn 860	P OT I/O Assign	1000	Nibble3=1, Nibble2=0
F11800		100011	CN1.7 P-OT 입력신호 할당
Dn861	N OT I/O Accian	0011H	Nibble1=1, Nibble0=1
FIIODI	N-OT I/O Assign		CN1.8 N-OT 입력신호 할당
Dn 862	HOME I/O Assign	0012H	Nibble1=1, Nibble0=2
11002	HOME I/O Assign	001211	CN1.10 EXT1 HOME 입력신호 할당

※ Pn522 의 값이 0 이 아닐 경우 상위 제어기와 Driver 간에 offset 이 발생 할 수 있습니다.

Pn210 setup example

		Load Configuration			
		Ball Screw	Disc Table	Belt and Pulley	
Step	Operation	Reference unit: 0.001 mm Load shaft Load shaft 20-bit encoder Ball screw pitch: 6 mm	Reference unit 0.01° Gear ratio: 1/100 Load shaft 20-bit encoder	Reference unit 0.005 mm Load shaft Gear ratio 1/50 Pulley diameter: 100 mm 20-bit encoder	
1	Check machine specifica- tions.	• Ball screw pitch: 6 mm • Gear ratio: 1/1	Rotation angle per revolu- tion: 360° Gear ratio: 1/100	Pulley diameter: 100 mm (pulley circumference: 314 mm) • Gear ratio: 1/50	
2	Check the encoder reso- lution.	1048576 (20-bit)	1048576 (20-bit)	1048576 (20-bit)	
3	Determine the reference unit used.	Reference unit: 0.001 mm (1 µm)	Reference unit: 0.01°	Reference unit: 0.005 mm (5 µm)	
4	Calculate the travel dis- tance per load shaft revo- lution.	6 mm/0.001 mm=6000	360°/0.01°=36000	314 mm/0.005 mm=62800	
5	Calculate the electronic gear ratio.	$\frac{B}{A} = \frac{1048576}{6000} \times \frac{1}{1}$	$\frac{B}{A} = \frac{1048576}{36000} \times \frac{100}{1}$	$\frac{B}{A} = \frac{1048576}{62800} \times \frac{50}{1}$	
c	Set as a start	Pn20E: 1048576	Pn20E: 104857600	Pn20E: 52428800	
6	Set parameters.	Pn210: 6000	Pn210: 36000	Pn210: 62800	
		1			

- Parameter 변경 후 반드시 Driver 전원을 재인가해 주시기 바랍니다.

3.2. Drive Tuning

- ML-표 연결이 정상적으로 이루어지면 구동 시 모터가 받는 부하와 속도에 맞춰 YASKAWA Driver 를 Tuning 해야 합니다.

- YASKAWA Driver Setup 프로그램인 SigmaWin+를 실행 시켜서 아래와 같은 순서로 Tuning 을 진행합니다.

A. Menu → Tuning 을 실행 시킵니다. (servo off 상태에서 실행 하셔야 합니다)

B. Moment of Inertia ratio 를 구합니다.

Execute 버튼 클릭

TEST 환경을 설정하고 Next 버튼

C. Auto Tuning.

Autotuning - Setting Conditions AXIS#21

The standard gain adjustment will be executed. In addition, automatic adjustments such as notch filter and anti-resonance control can be executed.

Executes adjustment suitable for a relatively low-rigidity mechanism, such as a belt mechanism.

Set conditions. Mode selection

Mechanism selection -

1:Belt mechanism

Tuning parameters -

Start tuning using the default settings.

×

•

Cancel

- Position reference input 에 체크한 뒤 Auto Tuning 을 실행합니다.

No reference input 은 Cruiser 혹은
 UMAC 과 같은 상위 제어기 없이 Turning
 할 때 선택 하시기 바랍니다.

-	- Setting Conditions 에서 시스템에 맞게 환경을 설정 합니다.
	- 설정이 완료되면 Next 버튼을 누릅니다.

Mode	1. Standard	일반적인 제어 시스템에서 선택합니다.
	2 For positioning	이동 중에 생기는 오차보다 정확한 위치로
Calaatiaa	2. For positioning	이동하는 것이 중요한 시스템에서 선택합니다.
Selection	3. For positioning especially	Overshoot 이 생기지 않도록 이동해야 하는
	to prevent overshooting	시스템에서 선택합니다.
	1. Belt mechanism	Belt를 사용해 구동할 경우 선택하세요.
Mechanism Selection	2. Ball screw mechanism or	Ball screw 나 Linear 모터를 사용한 시스템에서
	Linear motor	선택합니다.
	2 Digid model	강성이 높은 시스템에서 선택합니다.(진동이
	3. Rigia model	최대한 적게 발생되도록 설정됩니다)

4. SERVO FREQUENCY SETUP(EXCEPT CRUISER-S)

- **Cruiser-S 를 제외한** 제품의 경우 Servo IC 에서 Clock 을 받기 때문에 Servo Frequency 를 ML-III 통신 주파수에 맞게 2KHz 의 배수로 설정해 주어야 합니다. (SW2 를 통해 분주하여 통신 주파수는 2KHz 로 조정합니다. ("2.1.2.SW2: Servo Frequency 분주비 설정" 참조)

PMAC Suite	
File Project View Configure	Tools Backup Setup Help
: 🛅 • 🗃 • 💕 🖬 🎒 🕺 🖻 🛱	Macro Conversion
Watch:2 [00:UMAC TURBO:1.945 07/	PMAC Test Pro
Command	PMAC Plot Pro
👔 m 120,3	PMAC Tuning Pro
👔 m220,3	Turbo/UMAC Setup Pro
m320,3	UMAC Config Pro
m 420,3	CDU Deseures
<u> m</u> 115,4,100	CPU Resource
🛐 m 180, 4, 100	Memory Viewer
📊 m580,4,100	AxisLink Manager
m980,2,100	Calculations Cheat Sheet

- Tools \rightarrow Turbo/UMAC Setup Pro

1	Informati		x
	1	The Turbo Setup Pro program works with QMAC, UMAC, Turbo PMAC2, Turbo Ultalite and UMAC MACRO. Do you wish to continue?	
		<u>Y</u> es <u>N</u> o	

- Yes 버튼 클릭

PMAC Devices		×
PM IC 00 - ETH0 - IP: 192.6.94.5 PMAC 01 - ETH1 - IP: 192.6.94.6 PMAC 02 - ETH2 - IP: 192.6.94.7 PMAC 03 - ETH3 - IP: 192.168.0.201 PMAC 04 - USB0 - Plug and play PMAC 05 - SER3 - COM3, Baudrate: 38400, Parity:None	•	OK Insert Remove
PMAC 06 - NA PMAC 07 - NA	+	Test Cancel

- 현재 연결된 PMAC IP 선택

C PMAC Ultralite C Turbo Pmac <u>1</u>	ac-Turbo Type: C Turbo Pmac <u>2</u> C Turbo/UMAC <u>M</u> ACRO	♥ UMAC (Non-Macro) ♥ QMAC
Do you have any Acc	cesory 24 or 51 in your system	? FYes CNo
Do you have any Acc	cesory 24 or 51 in your system	? FYes CNo

- Next 버튼 클릭

Main PWM, phase, and servo frequency setup	Main PWM, phase, and servo frequency setup
Step 1: Choose Your Dominant PWM Frequency	Step 1: Choose Your Dominant PWM Frequency
4.5173 Khz (default) 🔽 User Defined:	4.5173 Khz (default) Click on >> to set your frequency
Step 2:	Step 2:
Select your dominant phase frequency 9.0346 Khz 💌	Select your dominant phase frequency 9.0346 Khz 💌
Step 3:	Step 3:
Select your dominant servo frequency 2.2586 Khz 💌	Select your dominant servo frequency 2.2586 Khz 💌
Now PMAC has PWM Freq: 4.5173 Khz Phase Freq: 9.0346 Khz Servo Freq: 2.2587 Khz.	Now PMAC has PWM Freq: 4.5173 Khz Phase Freq: 9.0346 Khz Servo Freq: 2.2587 Khz.
<u>Î</u> Çlose <u>B</u> ack <u>Next</u>	<u>Î</u> Close <u>Back</u> <u>Next</u>

- User Defined 체크 후 ">>"버튼 클릭

PWM frequency setting	×
Enter your PWM	frequency
6	Khz
<u> Ф</u> К	Cancel

- PWM Frequency 입력 (2의 배수로 입력)

Main PWM, phase, and servo frequency setup Step 1: Choose Your Dominant PWM Frequency 4.5173 Khz (default) Image: Click on >> to set your frequency
Step 2: Select your dominant phase frequency
Step 3: Select your dominant servo frequency
Now PMAC has PWM Freq: 4.5173 Khz Phase Freq: 9.0346 Khz Servo Freq: 2.2587 Khz.
<u>I</u> Close <u>B</u> ack <u>N</u> ext

- Phase Frequency 와 Servo Frequency 를 선택 (2의 배수로 선택)

- OK 버튼을 누른 후 Turbo/UMAC Setup Pro 종료

- Save & Reset

※ ML-III Drive 에 "A.b6A" 또는 "A.b6b" ALARM 이 발생한 경우 Servo Frequency 설정 후 반드시 Drive 전원을 재인가해 주시기 바랍니다.

5. ML-III SETUP (MECHATROLINK EXPLORE)

- MechatroLink Explorer 를 통하여 Cruiser 및 UMAC Setup 을 진행합니다.

PMAC Suite						
File Project	View	Configure	Tools	Backup	Setup	Help
i 🛅 • 💷 • 💕		Solution Expl	orer		Alt+1	
Watch:2 [00:UMA		Macro			Alt+2	- 11
Command		Output			Alt+3	
📊 m 120, 3	-	Find Result			Alt+4	
<u> </u> m220,3	X	ToolBox			Alt+5	
m320,3	*	Properties			Alt+7	
m420,3	42	MechatroLink	Explorer		Ctrl+1	
m180 4 100	42	AxisMotion E	xplorer		Ctrl+2	
m580,4,100	>	Terminal			Ctrl+4	
m980,2,100	3	Watch			Ctrl+5	
	===	Position			Ctrl+6	
	£3	Jog Ribbon			Ctrl+7	
		DPR Viewer			Ctrl+8	
🔂 Watch:1 [00:0		Motor Status		Ctrl	+Shift+1	
Watch:3 [00:UMA		Motor Simple	Status	Ctrl	+Shift+2	
Command		Coordinate Sy	stem Stat	tus Ctrl	+Shift+3	
		Global Status		Ctrl	+Shift+4	
		PLC / PLCC S	tatus	Ctrl	+Shift+5	
		Motor Status	Summary	Ctrl	+Shift+6	
		Toolbars				•
	~	Status Bar				

B. Master Scan

- Master 0 를 클릭한 후 오른쪽 버튼을 누르고 Master scan 을 누르면 현재 접속되어 있는 Station 이 검색됩니다.

MechatroLink Explorer:2 [00:UMAC TURB 👻 🕂 🗙	MechatroLink Explorer:2 [00:UMAC TURB 👻 👎 🗙	MechatroLink Explorer:2 [00:UMAC TURB T ×
MeschatroLink Explorer:2 [00:UMAC TURB ~ ↓ × Image: Wisser 0 [\$74000 Ver:1.95] Image: Wisser 0 [\$74000 Ver:	MechatroLink Explorer:2 [00:UMAC TURB ◆ ↓ × ● Image: All State (0.1574000 Vers1, 96) ●	MechatroLink Explorer:2 [00:UMAC TURB ↓ ↓ Image: Master 0 [374000 Ver1.95] Image: First Slave @1 (ST:21) Image: Slave @2 (ST:22) Xiii Slave @2 (ST:23) Xiii Slave @2 (ST:23) Image: Xiii Slave @3 (ST:23) Xiii Slave @4 (ST:24) Xiii Slave @2 (ST:25) Image: Xii Slave @2 (ST:25) Xiii Slave @2 (ST:25) Xiii Slave @2 (ST:26) Image: Xii Slave @2 (ST:26) Xiii Slave @2 (ST:27) Xiii Slave @2 (ST:28) Image: Xii Slave @2 (ST:28) Xiii Slave @2 (ST:28) Xiii Slave @2 (ST:28) Image: Xii Slave @2 (ST:28) Xiii Slave @2 (ST:22) Xiii Slave @2 (ST:22) Image: Xii Slave @2 (ST:27) Xiii Slave @2 (ST:22) Xiii Slave @2 (ST:22) Image: Xii Slave @2 (ST:22) Xii Slave @2 (ST:22) Xiii Slave @2 (ST:22) Image: Xii Slave @2 (ST:22) Xii Slave @2 (ST:22) Xii Slave @2 (ST:31) Image: Xii Slave @2 (ST:31) Xii Slave @2 (ST:32) Xii Slave @2 (ST:32)

- 2 Master Option 일 경우 각 Master 별로 접속된 Station 의 수가 First 와 Second 로 나뉘어 표시됩니다.

-1 Master Option 일 경우 First 에 접속된 Station 의 개수만 표시됩니다.

※ Scan 을 실행하였는데 접속된 Station 이 검색되지 않는 경우 Yakawa Drive 전면의 Rotary Switch 를 확인해 주시기 바랍니다. ("2.2.Yaskawa Drive Switch Setup" 참고) 같은 Link 내에 Station ID 가 중복될 경우 Scan 이 정상적으로 이루어지지 않을 수 있습니다.

※ Rotary Switch 설정이 정상임에도 Station 이 검색되지 않을 때는 "C. Station ID 확인"(다음단계)을 참조하여 ML-III Master Chip 에 저장된 Station 번호가 올바르게 설정되어 있는지 확인해 주시기 바랍니다.

※ 모든 설정이 정상임에도 Scan 이 이루어지지 않으면 ML-III Cable 을 교체하여 Test 해 보시기 바랍니다.

C. Station ID 확인

MechatroLink Explorer	2 [00:UMAC TURB ▼ ₽ ×	Stat	ion ID [N	Aaster:\$740	00 Channel:	First)		×	Sta	ation ID [N	Master:\$740	000 Channel:	First)	l	×
Master U [\$	74000 Ver:1,96j		Buffer	Ext ID 1	Ext_ID_2	ID 1	ID 2			Buffer	Ext ID 1	Ext ID 2	ID 1	ID 2	
	First Sc <u>a</u> n		@1	0	0	2	1			@1	0	0	2	1,	
x i	First Reset		@2	0	0	2	2	E		@2	0	0	2		~
×	Connect		@3	0	0	2	3			@3	0	0	2	3	
— ×			@4	0	0	2	4	=		@4	0	0	2	5 :	Ξ Ξ
	Disconnect		@5	0	0	2	5			@5	0	0	2	ğ	
	Station ID		@6	0	0	2	6			@6	0	0	2	8	
×			@7	0	0	2	7			@7	0	0	2	9	
×	Collapse All		@8	0	0	2	8			@8	0	0	2	A	
	Select Device		@9	0	0	2	9			@9	0	0	2	9	
			@10	0	0	2	A			@10	0	0	2	A	
× 14	Deselect Device		@11	0	0	2	В			@11	0	0	2	В	
× 🔆	Settings		@12	0	0	2	С			@12	0	0	2	С	
	410 G 10 (0 11 ED)		@13	0	0	2	D			@13	0	0	2	D	
×ĩ Sh	ave @14 (ST:2E)		@14	0	0	2	E			@14	0	0	2	E	
🖮 🐟 Second	ł		@15	0	0	2	F			@15	0	0	2	F	
× 1 SI:	ave @47 (ST:2F)		@16	0	0	3	0	-		@16	0	0	3	0	-
× SI	ave @48 (ST:30) ave @49 (ST:31) ave @50 (ST:32)		<u>O</u> pen	S	ive	<u>O</u> K	Save to Fla	ash		<u>O</u> pen	<u></u>	ave	<u>O</u> K	Save to I	Flash

- First & Second(1 Master 일 경우 First Only)를 클릭 후 "Station ID" 설정 창으로 진입합니다.

- 설정된 각 Station ID 가 drive 의 Rotary Switch 상태와 동일한지 확인합니다.
- 설정을 변경할 경우 반드시 "Save to Flash"버튼을 눌러주시기 바랍니다.

D. Master Configuration 시작

Configuration [Master:\$74000 Ver:1.96]	1
Interpolation motor settings	
Choose the start motor number and the motor counts.	
Start Motor #1	
Counts 18	Cruiser-S :
Servo Frequency 2 KHz 💌	
	Start Motor = 1
	Servo Frequency = 2KHz
Open Save Back Next Cancel	
Configuration [Master:\$74000 Ver:1.96]	
Interpolation motor settings	
Choose the start motor number and the motor counts.	Cruicor Ex :
Start Motor #5	Cluisei-rx.
Counts 18	
Servo Frequency 2 KHz	Start Motor = 5
4 KHz 6 KHz	
8 KHz 10 KHz 10 KHz	Servo Frequency = 선택
12 10 12	
Open Save Back Next Cancel	
Configuration [Master:\$74000 Ver:1.96]	
Interpolation motor settings	
Choose the start motor number and the motor counts.	
Start Motor #9	Cruiser-Ex :
Counts 18	
Servo Frequency 2 KHz	Start Motor – 9
2 KHz 4 KHz 6 Mar	
8 KHz 10 KHz	
12 KHz	Servo Frequency = 신택
Open Save Back Next Cancel	

E. ML-III 모터 시작번호 및 개수, Servo Frequency 를 설정합니다.

- Cruiser-S 일 경우 Start Motor 는 1 로 설정하고 Servo Frequency 는 2KHz 로 고정됩니다.

- Cruiser-Fx 일 경우 Start Motor 는 5 로 설정하고 Servo Frequency 는 2 의 배수로 선택합니다. ("4. Servo Frequency Setup"에서 설정한 주파수를 선택)

- Cruiser-Ex 일 경우 Start Motor 는 5 로 설정하고 Servo Frequency 는 2 의 배수로 선택합니다. ("4. Servo Frequency Setup"에서 설정한 주파수를 선택)

- UMAC 일 경우 Servo IC 로 제어하고 있는 모터의 다음 번호로 Start Motor 를 설정하고 Servo Frequency 는 2 의 배수로 선택합니다. ("4. Servo Frequency Setup"에서 설정한 주파수를 선택) F. 각 모터의 한 바퀴당 출력되는 Encoder Pule 를 입력합니다.

- 반드시 Yaskawa Drive 의 Pn210 과 같은 값을 입력하시기 바랍니다. (정상적으로 입력하지 않은 경우 Home Search 시 모터가 오동작할 수 있습니다) G. ML-III 에서 사용할 M 변수 영역 및 P 변수를 설정합니다.

Configuration [Master:\$74000 Ver:1.96]						
Configuration file ge	Configuration file generated					
Please select the various of	Please select the various options.					
Use MechatroLink direct com	mand buffer M-Variables					
Command buffer start number	4000 🚔 ~ 426	8				
<u>R</u> esponse buffer start number	7000 🔪 ~ 726	8				
Temporary P-Variable	8191 💌					
Download Suggested M-Vari	ables					
	Gener	ate Download				
Save	Back	Done				

- ML-III Setup 완료 후 ML-III 통신에 사용되는 M 변수에 다른 주소를 할당할 경우 정상적으로 통신이 이루어지지 않습니다.

😒 폴더 선택						Ŀ	×
🕒 🗢 🚽 🕨 temp 🕨 Mi	IL3_Setup			▼ 4 9	ML3_Setup 검색		P
구성 ▼ 새 폴더						855 💌	0
★ 물거환기 ■ 바탕 화면 웹 최근 위지 ④ OneDrive ■ 다운로드 ■ 라이브라리 ■ 분석 ■ 비디오 ■ 사진 ■ 유적 ■ 정SYSTEM (C) ● BD-BOM E 문이	01~	수정한 날짜 일지하는 항목	유형 そ이 없습니다.	37			
🖬 Ims iphone 💌							_
폴더: М	VL3_Setup				물더 선택	취소	

- 변수 설정 완료 후 Generate 버튼을 눌러 ML-III Setup 파일이 저장될 폴더의 위치를 설정합니다.

H. Download created file

Configuration [Master:\$74000 V	er:1.96]	×		
Configuration file generated Please select the various options.				
Use MechatroLink direct comm	and <u>b</u> uffer M-Variable	s		
Command buffer start number	4000 🔷 💊	4268		
Response buffer start number	7000 🚔 ~	7268		
Temporary P-Variable	8191 🚔			
☑ Download <u>S</u> uggested M-Variab	les			
		Generate Download		
Open Save	Back	Done		

- Generate 완료 후 "Download" 버튼을 누르면 생성된 파일이 바로 PMAC 으로 Download 됩니다.

※ 생성한 ML-III 프로젝트를 다른 PMAC 에 Download 하거나 같은 PMAC 에서 복구를 하기 위해서는 아래와 같이 Project file 을 열어 Download 를 진행합니다.

- File → Open → Project 로 이동한 후 이전에 생성한 Project 를 열어줍니다.

- "MLIII_Setting_Step1.pmc" 파일을 Download 합니다.
- "MLIII_Setting_Step2.pmc" 파일을 Download 합니다.

I. Save & Reset

- Terminal 에 "save"를 입력해 현재 설정을 저장합니다.

- Terminal 에 "\$\$\$"를 입력해 PMAC 을 Reset 합니다. (ML-III Setup 후에는 반드시 PMAC 을 Reset 해 주시기 바랍니다)

- 만약 Drive 에 Alarm 이 발생되어 있다면 PMAC 을 Reset 하기 전에 Drive 전원을 재인가해 주시기 바랍니다.

6. COMMAND & STATUS VARIABLES

6.1. Connection Command Variables

```
M8123 = 8 : ML-피 Connection
M8123 = 9 : ML-피 Disconnection
M8123 = -2 : ML-피 Error
M8123 = 5 : ML-피 Error Clear
- Error 발생 시(M8123=-2) Error clear 명령(M8123=5)를 실행하여 Error 를 Clear 해
주시기 바랍니다.
- Error clear 명령(M8123=5)을 실행해도 Clear 되지 않을 시 YASKAWA driver 의 전원을
재인가 해 주시기 바랍니다.
※ 참고 data - state variables
M8123 = 0 : ML-피 INIT
```

M8123 = 1	: ML-III RING_CFG
M8123 = 2	: ML-III READY
M8123 = 3	: ML-III START
M8123 = 4	: ML-III RUNNING
M8123 = 6	: ML-III PARAM

M8123 = 7 : ML-III PRE_RUN

6.2. Scan Status Variables

M8130 : Master_IC_1, Slave 1~31 scan status M8131 : Master_IC_1, Slave 32 M8132 : Master_IC_2, Slave 1~31 scan status M8133 : Master_IC_2, Slave 32

- Connection 명령 후 scan 된 slave 를 표시 합니다. - Bit 1 = 1st_SlaveID, Bit 2 = 2nd_SlaveID, ..., Bit 31 = 31st_SlaveID

Ex) #1 모터의 Slave ID 를 21, #2 모터의 Slave ID 를 22 라고설정하고 Scan 했을 때.

- → M8130 = (B)00000110 = (H)06 : bit2 =1, bit1 = 1
- ➔ Connection 명령 후 M8130 의 값이 정상적으로 체크되지 않으면 다시 connection 명령을 실행 하여야 합니다.

6.3. Connection Status Variables

M8134 : Master_IC_1, Slave 1~31 connection status M8135 : Master_IC_1, Slave 32~63 connection status M8136 : Master_IC_2, Slave 1~31 connection status M8137 : Master_IC_2, Slave 32~63 connection status - 현재 링크에 연결된 slave 의 상태를 표시 합니다. - Bit 1 = 1st_SlaveID, Bit 2 = 2nd_SlaveID, ..., Bit 31 = 31st_SlaveID. - M8130 ~ M8133 에서표시하는 Scan 상태와 다를 경우 연결이 해제된 것입니다.

- Ex) 1_{st}_Slave 와 2_{nd}_Slave 가 Scan 된상태 M8130 = (H)06 일 때.
- → M8134 = (H)06 : Normal state
- → M8134 = (H)02 : 2^{nd} slave disconnected.
- → M8134 = (H)00 : 1^{st} , 2^{nd} slaves disconnected.

6.4. Amp Alarm Status Variables

Alarm	Alarm Name	Meaning	Reset
A 710	Overload:	The motor was operating for several seconds to several tens of	Available
A.710	High Load	seconds under a torque largely exceeding ratings.	Available
A 910	Encoder	All the power supplies for the absolute encoder have failed and	NI/A
A.010	Backup Error	position data was cleared.	N/A
	Absolute	The battery voltage was lower than the specified value while	
A.830	Encoder	monitoring 4 seconds after the ALM signal outputs max.	Available
	Battery Error	5seconds when the control power supply is turned ON.	
	Synchronizatio	A synchronization error occurs during MECHATROLINK	Available
A.ESU	n Error	communications.	Available
A EE1	Synchronizatio	A synchronization failure occurs in MECHATROLINK	Available
A.E51	n Failed	communications.	Available

Command	Value
M8123 [M8123]	4
M8130 [M8130]	30
M8134 [M8134]	30
M7009 [M7009]	\$C90
M7024 [M7024]	\$01
M7039 [M7039]	\$01
M7054 [M7054]	\$0

AMP Alarm Resister

M7009 Slave1 Alarm resister M7024 Slave2 Alarm resister M7039 Slave3 Alarm resister M7054 (15 씩 증가)..

- M7009 = \$C90 : Encoder Communications Error

- Watch 창 등록 시 return type: Decimal, Output filter: Hexadecimal 로 설정하면 Alarm code 와 동일하게 관찰 가능합니다.

6.5. Error Check PLC Example

- 아래 예제는 Station 접속이상, Amp Fault 등의 에러를 처리하는 예제입니다.

// Input Station Number	
// ML-III Maser1/Master2 에 연결된 S	Station 의 개수를 입력합니다.
// M8130 Parameter 설명을 참고하세	<u>ା</u> ନ.
// Ex) Station 1~4 : 0b11110 => \$1E	
#define M1_STATION_NUM_1 \$1	E
#define M1_STATION_NUM_2 0	
#define M2_STATION_NUM_1 0	
#define M2_STATION_NUM_2 0	
// M8130~M8133 에는 Station 의 Sca	an 상태가 저장됩니다.
#define M1_FSCAN_STATUS_1 M8	8130
#define M1_FSCAN_STATUS_2 M8	8131
#define M2_FSCAN_STATUS_1 M8	8132
#define M2_FSCAN_STATUS_2 M8	8133
// Amp Fault Error 발생시 Mxx23 이 :	1로 변합니다.
#define AMP_FAULT_1 M1	123
#define AMP_FAULT_2 M2	223
#define AMP_FAULT_3 M3	323
#define AMP_FAULT_4 M4	423
// 현재 Error 상태를 P6000 에 저장협	갑니다.
#define ERROR_CONNECTION 1	
#define ERROR_AMPFAULT 2	
#define ERROR_STATUS P6	5000
OPEN PLC 10 clear	
// 에러가 클리어 되어 있는 상태에서	1만 동작합니다.
$IF(ERROR_STATUS = 0)$	
// 연결된 Station 개수와 Scan 된 Sta	ation 의 개수를 비교합니다.
IF(M1_FSCAN_STATU	JS_1 != M1_STATION_NUM_1
OR M1_FSCAN_STAT	rus_2 != M1_station_NUM_2
OR M2_FSCAN_STAT	rus_1 != M2_station_NUM_1
OR M2 FSCAN STAT	(US 2 != M2 STATION NUM 2)

7. ML-III HOME SEARCH

※ ML-III 를 사용하는 축은 "HMZ", "HOMEZ" 명령을 사용할 수 없습니다.

- MechatroLink 를 사용할 때 PMAC 의 Position 은 Drive 의 Position 을 읽어온 값입니다. 따라서 PMAC 에서 Position 을 강제로 Clear 시킬 수 없습니다. 서보온 상태에서 "HMZ"명령을 내릴 경우 현재 위치 값의 부호 반대 방향으로 모터가 폭주합니다.

7.1. Parameters

- Ixx22: Jog 속도 및 원점 복귀 Creep 속도(cts/ms)
- Ixx23: 원점 복귀 Approach 속도 및 방향 (±)(cts/ms)
- Ixx31: 원점 검색 Flag 선택
 - Bit 8 : 원점 검색 Enable
 - Bit 11, 10: 원점 검색 Flag 선택

bit1110	Home Search Flag
00	Motor INDEX
01	EXT1 (Connect with Home Sensor), CN1.10
10	EXT2 (Connect with Home Sensor), CN1.11
11	EXT3 (Connect with Home Sensor), CN1.12

- → \$100 : Index Capture Enable (Motor Index)
- → \$500 : EXT1 Capture Enable (Driver CN1.Pin10)
- → \$900 : EXT2 Capture Enable (Driver CN1.Pin11)
- → \$D00 : EXT3 Capture Enable (Driver CN1.Pin12)

※ ML3 를 사용하지 않고 일반 Servo IC 를 사용하여 모터를 제어할 경우 **Ixx31** 은 Derivative Gain 으로 사용됩니다.

- Ixx33: 원점 검색 방법 설정 (0: MODE0, 1: MODE1)
 - MODE 0: Latch signal
 - MODE 1: Deceleration Limit Switch + Latch Signal

※ ML3 를 사용하지 않고 일반 Servo IC 를 사용하여 모터를 제어할 경우 **Ixx33** 은 Integral Gain 으로 사용됩니다.

 Ixx67: Home Offset (단위 cts)
 ※ ML3 를 사용하지 않고 일반 Servo IC 를 사용하여 모터를 제어할 경우 Ixx67 은 Position Error Limit 로 사용됩니다.

※ ML3 를 사용하지 않고 일반 Servo IC 를 사용하여 모터를 제어할 경우 Motor 의 Home Offset 은 **Ixx26**을 통해 설정되며 단위는 [1/16 cts]입니다.

- Ixx18: MODE1 에서의 Deceleration Switch 검색 전의 Feed 속도(cts/msec)
 ※ ML3 를 사용하지 않고 일반 Servo IC 를 사용하여 모터를 제어할 경우 Ixx18 은 사용되지 않는 Parameter 입니다.
- **Ixx19**: 원점 검색 시 가/감속도(cts/msec²)
 ※ "HM"명령을 통한 원점 검색이 아닌 Jog 구동을 할 때는 **Ixx19** 는 Maximum Jog Acc Limit 로 쓰이며 Ixx20, Ixx21 에서 설정된 Jog 가속도 값을 제한해줍니다.
- Ixx71: Yaskawa ML3 Driver 에서 설정한 Encoder Resolution 입니다. MechatroLink Explorer 를 사용하여 Count per Location 을 설정할 때 Setup 파일에 자동으로 입력됩니다. 반드시 Yaskawa Driver 의 Pn210 과 같은 값으로 설정하십시오.
 ※ ML3 를 사용하지 않고 일반 Servo IC 를 사용하여 모터를 제어할 경우 Ixx71 은 Count per N Commutation Cycles 로 사용됩니다.

Parameter	Not use MechtroLink3	MechtroLink3	
Ixx31	Derivative Gain	Home Search Flag Select	
Ixx33	Integral Gain	Home Search Mode Select	
Ixx67	Position Error Limit	Home Offset	
Ixx18	Not Use	Home Search Speed Before Deceleration	
Ixx71	Count per Commutation Cycles	Encoder Resolution	
Mxx16	ENC Compare Output Value	DEC(Yaskawa Driver I/O) Flag Status	
Mxx17	ENC Capture Flag	EXT1(Yaskawa Driver I/O) Flag Status	
Mxx18	ENC Counter Error Flag	EXT2(Yaskawa Driver I/O) Flag Status	
Mxx19	CHC Input Status	EXT3(Yaskawa Driver I/O) Flag Status	

7.2. Home Sequence

• Mode 0 (Using Latch Signal)

- ▶ 원점 검색 Mode 0. (Ixx33 = 0)
- ▶ Home Flag 를 선택 합니다. (Ixx31)
- ▶ 원점 검색 방향 및 속도를 설정 합니다. (Ixx23).
- ➤ Home Flag 검색 시 가/감속도 설정. (Ixx19). 원점을 지나쳐 온 만큼 Creep 속도로 복귀. (Ixx23)
- ➢ Home offset (Ixx67) 설정하였을 경우 Home Flag 감지 후 이동한 거리를 포함하여 Creep speed 로 움직이게 됩니다.

• Mode 1 (Using Deceleration Switch+ Latch Signal)

- ▶ 원점 검색 Mode1. (Ixx33 = 1)
- ➢ Home Flag 를 선택 합니다. (Ixx31)
- ▶ Feed speed (Ixx18)는 Deceleration switch 검색 전의 속도 입니다.
- ▷ Deceleration switch 는 active low 로 검색되고, CN1.pin9으로 연결 됩니다.. Deceleration switch 검색 후 Approach speed (Ixx23)로 감속 됩니다.
- > Deceleration Switch 가 LOW 일 동안에는 Home flag 는 검색되지 않습니다.
- ➢ Home Flag 검색 시 가/감속도 설정. (Ixx19). 원점을 지나쳐 온 만큼 Creep 속도로 복귀. (Ixx23)
- ▶ 원점 검색 방향 및 속도를 설정 합니다. (Ixx23).

7.3. Home Search PLC Example

// I-variables : Ixx(모터번호) (Ex) Jog_ACC : Motor1 => I119, Motor2 => I219				
#define M1_JOG_ACC	1119			
#define M1_JOG_VEL	1122			
#define M1_HOME_CTRL	1131			
#define M1_HOME_MODE	1133			
#define M1_HOME_OFFSET	1167			
#define M1_HOME_VEL	1123			
// M-variables : Mxx(모터번호) (Ex) In-Pos	: Motor1 => M140, Motor2 => M240			
#define M1_OPEN_LOOP	M138			
#define M1_IN_POS	M140			
#define M1_HOME_COMP	M145			
#define M1_JOG_ACC_BUF	P119			
#define M1_JOG_VEL_BUF	P122			
OPEN PLC 11 CLEAR				
// 현재 조그 속도와 조그 가속도 제한 값을 버퍼에 저장합니다.				
M1_JOG_ACC_BUF = M1_JOG_ACC				
M1_JOG_VEL_BUF = M1_JOG_VEL				
// 원점 검색 가속도와 홈센서(Index)통과 후 Creep Speed 를 설정합니다.				
// lxx19는 Jog 가속도 리미트 값이지만 원점검색 가속도로 사용됩니다.				
$M1_JOG_ACC = 0.1$	// set home search acc 0.1[cts/msec2]			
M1_JOG_VEL = 50	// set creep speed			
// 원점 검색방식과 Offset, 검색속도와 방향을 설정합니다.				
M1_HOME_MODE = 0	// select mode 0			
M1_HOME_CIRL = \$100	// select home pos : index			
M1_HOME_OFFSET = 0	// set home offset			
	// set home vel & dir			
// 원심 검색 완료 bit 들 clear 합니다.				
M1_HOME_COMP = 0				
GWID # IJ/ ;5611 - 50*9299609/;10				
ENDWHILE				

I5611 = 3000*8388608/I10 WHILE (M1_OPEN_LOOP=1 OR M1_IN_POS=0)AND(I5611>0) **ENDWHILE** // Amp Enable 이 정상적으로 완료되지 않으면 PLC를 종료합니다. IF (M1_OPEN_LOOP=1 OR I5611 < 0) CMD"#1K" M1_JOG_ACC = M1_JOG_ACC_BUF // load jog acc limit M1_JOG_VEL = M1_JOG_VEL_BUF // load jog vel **DISABLE PLC 11** RETURN ENDIF // 원점 검색을 시작합니다. CMD"#1HM" i5611 = 50*8388608/i10 WHILE (i5611>0) **ENDWHILE** 15611 = 30000*8388608/110 WHILE (M1_OPEN_LOOP=1 OR M1_IN_POS=0)AND(I5611>0) **ENDWHILE** // 설정한 시간 내에 원점 검색이 완료되지 않으면 PLC를 종료합니다. IF (M1_OPEN_LOOP=1 OR I5611 < 0) CMD"#1K" M1_JOG_ACC = M1_JOG_ACC_BUF // load jog acc limit M1_JOG_VEL = M1_JOG_VEL_BUF // load jog vel **DISABLE PLC 11** RETURN ENDIF // 정상적으로 원점 검색이 완료되면 버퍼에 저장한 값을 불러옵니다. M1_JOG_ACC = M1_JOG_ACC_BUF // load jog acc limit M1_JOG_VEL = M1_JOG_VEL_BUF // load jog vel **DISABLE PLC 11** CLOSE

8. ABSOLUTE ENCODER READ

- MechatroLink 에서 Absolute Position 을 읽어오기 위해서는 Yaskawa driver 로 Sensor On 명령을 내려줘야 합니다.

-Absolute Encoder 사용시에는 Home Search 과정이 필요 없습니다.

8.1. ML-III Command List

Profile	Command Code (Hex.)	Command	Operation	Compliance*
Standard Servo	20	POS_SET	Set coordinates	0
	21	BRK_ON	Request for applying brake	0
	22	BRK_OFF	Release brake	0
	23	SENS_ON	Request for turning sensor ON	0
	24	SENS_OFF	Request for turning sensor OFF	0
	30	SMON	Monitor servo status	0
	31	SV_ON	Servo ON	0
	32	SV_OFF	Servo OFF	0
	34	INTERPOLATE	Interpolation	0
	35	POSING	Positioning	0
	36	FEED	Constant speed feed	0
	37	EX_FEED	Positioning at constant speed by external input	0
	39	EX_POSING	Positioning by external input	0
	3A	ZRET	Zero point return	0
	3C	VELCTRL	Velocity control	0
	3D	TRQCTRL	Torque (force) control	0
	40	SVPRM_RD	Read servo parameter	Δ
	41	SVPRM_WR	Write servo parameter	0

- ML-Ⅲ를 통해 Yaskawa Driver로 전송할 수 있는 Servo Command는 위와 같습니다.
- Absolute Encoder를사용시에는반드시"SENS_ON(0x23)"을 사용하여 ABS Encoder를 Enable 시켜줘야 합니다.
- "SENS_ON" 신호를 전송한 후 에는"SMON(0x30)" 명령을 전송하여 Servo Motor의 상태를 Monitoring 하셔야 합니다.
- Absolute Encoder가Enable 되어 있으면 UMAC Absolute Encoder Read 명령어인 "#n\$"를 이용하여 Absolute Position을 읽어 옵니다

8.2. ML-III Command Address

• ML-III Command Address 는 "MechatroLinkCommands.pmc"에 정의되어 있습니다.

BasicSettings.pmc	2013-11-05 오후	PMC 파일	4KB
Cruisermvar.pmc	2013-04-09 오후	PMC 파일	177KB
FlagDefinitions.pmc	2013-11-05 오후	PMC 파일	2KB
MechaMainPLC.pmc	2013-11-05 오후	PMC 파일	14KB
MechaOpenServo.pmc	2013-03-13 오후	PMC 파일	14KB
MechatroLinkCommands.pmc	2013-11-05 오후	PMC 파일	3KB
MLIII_Setting_Step1.pmc	2013-11-05 오후	PMC 파일	1KB
MLIII_Setting_Step2.pmc	2013-11-05 오후	PMC 파일	1KB
MLink.pmc	2013-06-26 오후	PMC 파일	3KB
MLinkDown.pmc	2013-11-05 오후	PMC 파일	1KB

• Command Address 는 Command buffer 의 첫 번째 M 변수에 정의되어 있으며, 모터의 번호가 증가할 수록 15 만큼의 숫자가 더해져서 할당 됩니다.

Ex) Command Buffer Start Address = M4000 @1 CMD ADD : **M4000**->Y:\$74000,0,8

@2 CMD ADD : M4015->Y:\$7400C,0,8

@3 CMD ADD : M4030->Y:\$74018,0,8

@4 CMD ADD : M4045->Y:\$74024,0,8

Configuration [Master:\$74000]						
Configuration file generated Please select the various options.						
☑ Use MechatroLink direct command buffer M-Variables						
Command buffer start number	4000 🚔 💊	4013				
Response buffer start number	7000 🊔 💊	7013				
Temporary P-Variable	8191 🊔					
Download Suggested M-Variab	oles					
		Generate	Download			
Open Save	Back		Done			

 Response buffer 를 사용하여 Command 를 내린 후 정상적으로 Driver 로 전송되었는지 확인 가능 합니다. Response buffer 역시 모터의 번호가 증가할 수록 15 만큼의 숫자가 더해져서 할당 됩니다.

Ex) Response Buffer Start Address = M7000 @1 REPS ADD : M7000->Y:\$74400,0,8 @2 REPS ADD : M7015->Y:\$7440C,0,8 @3 REPS ADD : M7030->Y:\$74418,0,8

. . .

•••

8.3. ABS Encoder Read PLC Example

9. ML-III 통신 FIRMWARE UPGRADE

MechatroLink 통신을 위한 Firmware 를 업그레이드 합니다. (필요 시 진행)
 A. SW2 No.8 을 ON 으로 변경 후 전원을 인가 합니다. (UMAC- SW3 No.4)

<Cruiser>

<UMAC>

- B. **eXcom** port 에 Ethernet 을 연결 합니다.
- C. "UComm_ML3_FW_Update.exe" 를 실행하여 Connect 합니다. (IP: 192.6.94.128)

Connect 가 되면 현재의 Firmware version 이 표기 됩니다.

D. 다운로드 할 Firmware 를 선택 합니다.

Firmware 가 선택되면 다운로드 될 Firmware ver 이 표기 됩니다.

E. "Download F/W"를 Click 하여 Firmware 를 다운로드 합니다.

F. 완료 (완료 후 Switch Off 로 변경)

10. SERVO FREQUENCY CHANGE FOR CRUISER-S

- Cruiser-S 는 출하 시 Servo Clock 이 기본적으로 2KHz 로 설정되어 있습니다. Cruiser-S 에는 Servo IC 가 포함되어 있지 않기 때문에 Servo Clock 을 조정하기 위해서는 Macro IC 의 Clock 을 조정하여야 합니다.
- Macro IC 의 Clock 을 조정하는 순서는 아래와 같습니다.
 - I4902 확인: I4902 를 읽었을 때 "\$2"이면 정상입니다. "\$2"일 경우 MACRO IC_1 이 감지된 것이며, Base Address 는 "\$79400"입니다.
 - ② I19 확인: I19 를 읽었을 때 "6857"이면 정상입니다. I19 가 "6857"일 경우 현재 PMAC의 Clock Source 는 MACRO IC_1 입니다.
 - ③ I21 변경: "\$\$\$***" 상태에서 I21 은 "0"으로 설정되어 있습니다. I21 에 올바른 주소가 설정되어 있지 않을 경우 Cruiser-S 의 Servo Clock 을 변경시킬 수 없습니다. 반드시 I21=\$79400 으로 변경해 주시기 바랍니다.
 - ④ I6850~i6852 변경: 매뉴얼을 참고하여 I6850~i6852 를 원하는 Servo 주파수에 맞게 변경합니다.
 - ⑤ I10 변경: 원하는 Servo 주파수에 맞게 I10 값을 변경합니다.
 - ⑥ Save & Reset 을 진행합니다. (Terminal 에 "Save" → "\$\$\$")
 - ⑦ 위와 같은 순서로 변경한 Servo 주파수는 공장 초기화(\$\$\$***)를 진행하여도 유지되며, I21 에 MACRO IC_1 의 Base 주소를 입력하지 않으면 I6800~I6902 의 값을 변경하여도 Servo 주파수가 바뀌지 않습니다.

11. BACKUP & RESTORE

A. Cruiser 를 백업하고 Restore 시 Firmware 버젼과 ML3 프로그램의 버전이 일치해야 합니다.

따라서 Backup 파일의 Firmware 버전과 PMAC Suit 버전을 비교하는 과정이 필요합니다.

;Full PMAC Configuration

;PROM Version 1.947

;ML3 Version 1.94

;Backup performed on Fri May 23 18:13:09 2014

••••

●백업파일(*.CFG)을 열어보면 위와 같이 현재 PMAC 의 Firmware 버전과 ML3 펌웨어 버전을 알 수 있습니다.

● 리스토어를 진행할 PMAC 의 Firmware 버전과 ML3 프로그램 버전은 위와 같이 확인 가능합니다. PMAC Firmware 버전은 Terminal 창에서 "ver"명령을 통해 확인 가능하며, ML3 프로그램 버전은 MechatroLink Explore Window 에서 확인 가능합니다.

B. Restore 작업을 완료한 후에는 반드시 Station ID 가 Drive 설정과 일치하는지 확인하셔야 합니다.

Station ID 는 Cruiser 의 Flash Memory 에 저장되는 것이 아니라 ML3 Master Chip 에 저장되는 내용이므로 Backup File(*.CFG)로 저장되지 않습니다.

● Backup 완료 후 MechatroLink Explorer에서 "First(Second) → Station ID" 순서로 Station ID 설정 창을 열어준 후 Save 버튼을 눌러 현재 Station ID를 파일로 저장합니다.

● Restore 후에는 Backup 시 저장했던 파일을 열어준 후 Save to Flash 버튼을 눌러 Station ID 를 ML3 Master Chip 에 저장합니다.

※ PMAC Suit Ver 6.2.269 이전 버전에서는 Station ID 설정창의 Save, Open 버튼이 없습니다. PMAC Suit 최신 버전을 사용하고 있지 않은 경우 사용자가 수동으로 Station ID 를 입력해 주셔야 합니다.